• Title/Summary/Keyword: CMP process

Search Result 468, Processing Time 0.022 seconds

Development of Bonding Dispenser and Press Machine to Regenerate Retainer Ring for Semiconductor CMP Process (반도체 CMP 공정용 리테이너 링 재생을 위한 본딩 디스펜서 및 프레스 머신 개발)

  • Hyoung-Keun Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.507-514
    • /
    • 2024
  • In the semiconductor manufacturing line, continuous efforts are being made to reduce the cost of products produced, and the demand for this is accelerating in the chemical mechanical polishing(CMP) process, and a representative example of these cost reduction items is the 5-Zone Ring. After about 150 hours of use in the CMP process, the thickness of the ring decreases to less than 1 mm and must be replaced with a new product. Therefore, in this study, bonding dispensers and press machines with a dispensing amount error of 10g±0.8% or less and a pressure uniformity of ±1.8% or less were developed to reduce semiconductor manufacturing costs by repeatedly regenerating worn parts of the retainer ring, and to minimize environmental pollution caused by industrial waste treatment.

The Feasibility Study of CMP Wastewater Treatment Using Tubular Membrane and Coagulants (응집제와 관형막을 활용한 CMP 폐수 처리 가능성 연구)

  • Jung, Ho Chan;Jung, Cheol Joong;Song, Ja Yeon;Kim, Youn Kook;Lee, Sun Yong
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.5
    • /
    • pp.639-645
    • /
    • 2012
  • The purpose of this study is to identify the possibility of the CMP wastewater treatment from semiconductor fabrication under operating tubular membrane with coagulants. To find suitable coagulants treating CMP wastewater, we conducted Jar-test. After Jar-test experiments suitable coagulants are PAC(17%), $Ca(OH)_2$ and optimum coagulant dosage is PAC(17%) 10mg/L, $Ca(OH)_2$ 110 ~ 120mg/L. Based on these results, the tubular membrane was applied to CMP wastewater, the turbidity removal efficiency is $Ca(OH)_2$ > PAC(17%) > Nothing. The fast cross-flow velocity and backwash process what are operating characteristics of tubular membrane can be stable CMP wastewater treatment. But when the coagulant and tubular membrane are used at the same time, the withdraw and treatment of the CMP wastewater are possibile. However further treatment process needs if treated water will be used for semiconductor fabrications.

A study on manufacture and evaluation of CMP pad controllable contact area (접촉 면적을 제어할 수 있는 CMP 패드 제작 방법 및 성능 평가에 관한 연구)

  • Choi, Jae-Young;Kim, Hyoung-Jae;Jeong, Young-Seok;Park, Jae-Hong;Kinoshita, Masaharu;Jeong, Hae-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.247-251
    • /
    • 2004
  • Chemical-Mechanical Polishing(CMP) especially is becoming one of the most important ULSI processes for the 0.25m generation and beyond. And there are many elements affecting CMP performance such as slurry, pad, process parameters and pad conditioning. Among these elements the CMP pad is considered one of the most important because of its change. But the surface of the pad has irregular pores, so there is non-uniformity of slurry flow and of contact area between wafer and the pad, and glazing occurs on the surface of the pad. So we make CMP pad with micro structure using micro molding method. This paper introduces the basic concept and fabrication technique of CMP pad with micro-structure and the characteristic of polishing. Experimental results demonstrate the removal rate, uniformity, and time vs. removal rate.

  • PDF

Influence of D.I. Water Pressure and Purified $N_2$ Gas on the Inter Level Dielectric-Chemical Mechanical Polishing Process (탈이온수의 압력과 정제된 $N_2$ 가스가 ILD-CMP 공정에 미치는 영향)

  • Kim, Sang-Yong;Seo, Yong-Jin;Kim, Chang-Il;Chung, Hun-Sang;Lee, Woo-Sun;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.31-34
    • /
    • 2000
  • It is very important to understand the correlation of between inter layer dielectric(ILD) CMP process and various facility factors supplied to equipment system. In this paper, the correlation between the various facility factors supplied to CMP equipment system and ILD CMP process were studied. To prevent the partial over-polishing(edge hot-spot) generated in the wafer edge area during polishing, we analyzed various facilities supplied at supply system. With facility shortage of D.I. water(DIW) pressure, we introduced an adding purified $N_2(PN_2)$ gas in polishing head cleaning station for increasing a cleaning effect. DIW pressure and PN2 gas factors were not related with removal rate, but edge hot-spot of patterned wafer had a serious relation. We estimated two factors (DIW pressure and PN2 gas) for the improvement of CMP process. Especially, we obtained a uniform planarity in patterned wafer and prohibited more than 90% wafer edge over-polishing. In this study, we acknowledged that facility factors supplied to equipment system played an important role in ILD-CMP process.

  • PDF

Effects of Consumable on STI-CMP Process (STI-CMP 공정에서 Consumable의 영향)

  • Kim, Sang-Yong;Park, Sung-Woo;Jeong, So-Young;Lee, Woo-Sun;Kim, Chang-Il;Chang, Eui-Goo;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.185-188
    • /
    • 2001
  • Chemical mechanical polishing(CMP) process is widely used for global planarization of inter-metal dielectric (IMD) layer and inter-layer dielectric (ILD) for deep sub-micron technology. However, as the IMD and ILD layer gets thinner, defects such as micro-scratch lead to severe circuit failure, which affect yield. In this paper, for the improvement of CMP process, deionized water (DIW) pressure, purified $N_2 \; (PN_2)$ gas, slurry filter and high spray bar were installed. Our experimental results show that DIW pressure and $PN_2$ gas factors were not related with removal rate, but edge hot-spot of patterned wafer had a serious relation. Also, the filter installation in CMP polisher could reduce defects after CMP process, it is shown that slurry filter plays an important role in determining consumable pad lifetime. The filter lifetime is dominated by the defects. However, the slurry filter is impossible to prevent defect-causing particles perfectly. Thus, we suggest that it is necessary to install the high spray bar of de-ionized water (DIW) with high pressure, to overcome the weak-point of slurry filter. Finally, we could expect the improvements of throughput, yield and stability in the ULSI fabrication process.

  • PDF

Effects of Various Facility Factors on CMP Process Defects (CMP 공정의 설비요소가 공정 결함에 미치는 영향)

  • Park, Seong-U;Jeong, So-Yeong;Park, Chang-Jun;Lee, Gyeong-Jin;Kim, Gi-Uk;Seo, Yong-Jin
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.5
    • /
    • pp.191-195
    • /
    • 2002
  • Chemical mechanical Polishing (CMP) process is widely used for the global planarization of inter-metal dielectric (IMD) layer and inter-layer dielectric (ILD) for deep sub-micron technology. However, as the IMD and ILD layer gets thinner, defects such as micro-scratch lead to severe circuit failure, which affect yield. In this paper, for the improvement of CMP process, deionized water (DIW) pressure, purified $N_2$ ($PN_2$) gas, point of use (POU) slurry filler and high spray bar (HSB) were installed. Our experimental results show that DW pressure and P$N_2$ gas factors were not related with removal rate, but edge hot-spot of patterned wafer had a serious relation. Also, the filter installation in CMP polisher could reduce defects after CMP process, it is shown that slurry filter plays an important role in determining consumable pad lifetime. The filter lifetime is dominated by the defects. However, the slurry filter is impossible to prevent defect-causing particles perfectly. Thus, we suggest that it is necessary to install the high spray bar of de-ionized water (DIW) with high pressure, to overcome the weak-point of slurry filter Finally, we could expect the improvements of throughput, yield and stability in the ULSI fabrication process.

Development of point-of-use filter evaluation method using chemical mechanical planarization slurry (Chemical mechanical planarization 슬러리에 사용되는 point-of-use 필터의 평가 방법 개발)

  • Jang, Sunjae;Kulkarni, Atul;Kim, Hyeong-U;Kim, Taesung
    • Particle and aerosol research
    • /
    • v.12 no.4
    • /
    • pp.145-150
    • /
    • 2016
  • During the chemical mechanical planarization (CMP) process, slurry that comprises abrasive particles can directly affect the CMP performance and quality. Mainly, the large particles in the slurry can generate the defects on the wafer. Thus, many kinds of filters have been used in the CMP process to remove unwanted over-sized particles. Among these filters, the point-of-use (POU) filter is used just before the slurry is supplied onto the CMP pad. In the CMP research field, analysis of the POU filter has been relatively exceptional, and previous studies have not focused on the standardized filtration efficiency (FE) or filter performance. Furthermore, conventional evaluation methods of filter performance are not appropriate for POU filters, as the POU filter is not a membrane type, but is instead a depth type roll filter. In order to accurately evaluate the POU filter, slurry FE according to particle size was measured in this study. Additionally, a CMP experiment was conducted with filtered slurry to demonstrate the effects of filtered slurry on CMP performance. Depending on the flow rate and the filter retention size, the FE according to particle size was different. When the small and large particles have different FEs, the total filtration efficiency (TFE) can still have a similar value. For this reason, there is a need to measure the FE with respect to the particle size to verify the effects of the POU filter on the CMP process.

A Study on Oxidizer Effects in Tungsten CMP (텅스텐 CMP에서 산화제 영향에 관한 연구)

  • Park, Boumyoung;Lee, Hyunseop;Park, Kiyhun;Jeong, Sukhoon;Seo, Heondeok;Jeong, Haedo;Kim, Hoyoun;Kim, Hyoungjae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.9
    • /
    • pp.787-792
    • /
    • 2005
  • Chemical mechanical polishing(CMP) has become the process of choice for modem semiconductor devices to achieve both local and global planarization. CMP is a complex process which depends on numerous variables such as macro, micro and nano-geometry of pad, relative velocity between pad and wafer stiffness and dampening characteristics of pad, slurry, pH, chemical components of slurry, abrasive concentration, abrasive size, abrasive shape, etc. Especially, an oxidizer of chemical components is very important remove a target material in metal CMP process. This paper introduces the effect of oxidizer such as $H_2O_2,\;Fe(NO_3)_3\;and\;KIO_3$ in slurry for tungsten which is used in via or/and plug. Finally the duplex reacting mechanism of $oxidizer(H_2O_2)$ through adding the $catalyst(Fe(NO_3)_3)$ could acquire the sufficient removal rate in tungsten CMP.

Metal CMP Characteristics by Oxidizer Modification (Oxidizer modify에 의한 Metal CMP 특성)

  • Park, Suno-Woo;Kim, Chul-Bok;Kim, Sang-Yong;Lee, Woo-Sun;Chang, Eui-Goo;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.727-730
    • /
    • 2004
  • In this paper, so as to investigate the influence of oxidizer for each metal film using the alumina-based slurry, we have peformed the W/Ti metal-CMP process by adding $H_2O_2$ as a representative oxidizer from 1 wt% to 9 wt%, respectively. As an experimental result, for the case of 5 wt% oxidizer added, the removal rates were improved and polishing selectivity of 1.4 : 1 was obtained. Also, we compared the effects of oxidizer or W-CMP process with three different kind of oxidizers with 5 wt% hydrogen peroxide such as $Fe(NO_3)_3$, $H_2O_2$, and $KIO_3$. Finally, atomic force microscope (AFM) measurements were carried out for the analysis of surface morphology and root mean square (RMS) roughness after CMP Process.

  • PDF