• Title/Summary/Keyword: CMOS Process

Search Result 1,650, Processing Time 0.037 seconds

A CMOS Band-Pass Delta Sigma Modulator and Power Amplifier for Class-S Amplifier Applications (S급 전력 증폭기 응용을 위한 CMOS 대역 통과델타 시그마 변조기 및 전력증폭기)

  • Lee, Yong-Hwan;Kim, Min-Woo;Kim, Chang-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.9-15
    • /
    • 2015
  • A CMOS band-pass delta-sigma modulator(BPDSM) and cascode class-E power amplifier have been developed CMOS for Class-S power amplifier applications. The BPDSM is operating at 1-GHz sampling frequency, which converts a 250-MHz sinusoidal signal to a pulse-width modulated digital signal without the quantization noise. The BPDSM shows a 25-dB SQNR(Signal to Quantization Noise Ratio) and consumes a power of 24 mW at an 1.2-V supply voltage. The class-E power amplifier exhibits an 18.1 dBm of the maximum output power with a 25% drain efficiency at a 3.3-V supply voltage. The BPDSM and class-E PA were fabricated in the Dongbu's 110-nm CMOS process.

The Design and Fabrication of Reduced Phase Noise CMOS VCO (위상 잡음을 개선한 CMOS VCO의 설계 및 제작)

  • Kim, Jong-Sung;Lee, Han-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.5 s.120
    • /
    • pp.539-546
    • /
    • 2007
  • In this paper, a 3-D EM simulation methodology for on-chip spiral inductor analysis has provided and it is shown that the methodology can be adapted to the highly predictable design for CMOS VCO. LC-resonator type VCO have fabricated by using standard 0.25 um CMOS process. And the LC VCO layout case which has pattern ground shielded inductors and the other layout case which has no pattern grounded inductors were fabricated for the verification of their effects on the VCO's phase noise by reducing the Q-factor of inductors. Fabricated VCO has 3.094 GHz, -12.15 dBm output at the tuning voltage of 2.5 V, and from the simulation, Q-factor of the pattern grounded inductor has increased 8% at 3 GHz, and from the measurement results, the phase noise has reduced by 9 dB at the 3 MHz off-set frequency for the pattern grounded inductor layout case.

Design of Low Power CMOS LNA for 2.4 GHz ZigBee Applications (2.4 GHz ZigBee 응용을 위한 저전력 CMOS LNA 설계)

  • Cho In-Shin;Yeom Kee-Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.259-262
    • /
    • 2006
  • This paper presents a design of low power CMOS LNA(Low Noise Amplifier) for 2.4 GHz ZigBee applications. The proposed circuit has been designed by using TSMC $0.18{\mu}m$ CMOS process and current-reused two-stage cascade topology. LNA design procedures and the simulation results using ADS(Advanced Design System) are presented in this paper. Simulation results shows that the LNA has a extremely low power dissipation of 1.38mW with a $V_{DD}$ of 1.0V. The LNA also has a maximum gain of 13.38dB, input return loss of -20.37dB, output return loss of -22.48dB and noise figure of 1.13dB.

  • PDF

Design of a Comparator with Improved Noise and Delay for a CMOS Single-Slope ADC with Dual CDS Scheme (Dual CDS를 수행하는 CMOS 단일 슬로프 ADC를 위한 개선된 잡음 및 지연시간을 가지는 비교기 설계)

  • Heon-Bin Jang;Jimin Cheon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.465-471
    • /
    • 2023
  • This paper proposes a comparator structure that improves the noise and output delay of a single-slope ADC(SS-ADC) used in CMOS Image Sensor (CIS). To improve the noise and delay characteristics of the output, a comparator structure using the miller effect is designed by inserting a capacitor between the output node of the first stage and the output node of the second stage of the comparator. The proposed comparator structure improves the noise, delay of the output, and layout area by using a small capacitor. The CDS counter used in the single slop ADC is designed using a T-filp flop and bitwise inversion circuit, which improves power consumption and speed. The single-slope ADC also performs dual CDS, which combines analog correlated double sampling (CDS) and digital CDS. By performing dual CDS, image quality is improved by reducing fixed pattern noise (FPN), reset noise, and ADC error. The single-slope ADC with the proposed comparator structure is designed in a 0.18-㎛ CMOS process.

A CMOS Readout Circuit for Uncooled Micro-Bolometer Arrays (비냉각 적외선 센서 어레이를 위한 CMOS 신호 검출회로)

  • 오태환;조영재;박희원;이승훈
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.1
    • /
    • pp.19-29
    • /
    • 2003
  • This paper proposes a CMOS readout circuit for uncooled micro-bolometer arrays adopting a four-point step calibration technique. The proposed readout circuit employing an 11b analog-to-digital converter (ADC), a 7b digital-to-analog converter (DAC), and an automatic gain control circuit (AGC) extracts minute infrared (IR) signals from the large output signals of uncooled micro-bolometer arrays including DC bias currents, inter-pixel process variations, and self-heating effects. Die area and Power consumption of the ADC are minimized with merged-capacitor switching (MCS) technique adopted. The current mirror with high linearity is proposed at the output stage of the DAC to calibrate inter-pixel process variations and self-heating effects. The prototype is fabricated on a double-poly double-metal 1.2 um CMOS process and the measured power consumption is 110 ㎽ from a 4.5 V supply. The measured differential nonlinearity (DNL) and integrat nonlinearity (INL) of the 11b ADC show $\pm$0.9 LSB and $\pm$1.8 LSB, while the DNL and INL of the 7b DAC show $\pm$0.1 LSB and $\pm$0.1 LSB.

Design of a CMOS Tx RF/IF Single Chip for PCS Band Applications (PCS 대역 송신용 CMOS RF/IF 단일 칩 설계)

  • Moon, Yo-Sup;Kwon, Duck-Ki;Kim, Keo-Sung;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • v.7 no.2 s.13
    • /
    • pp.236-244
    • /
    • 2003
  • In this paper, RF and IF circuits for mobile terminals which have usually been implemented using expensive BiCMOS processes are designed using CMOS circuits, and a Tx CMOS RF/IF single chip for PCS applications is designed. The designed circuit consists of an IF block including an IF PLL frequency synthesizer, an IF mixer, and a VGA and an RF block including a SSB RF mixer and a driver amplifier, and performs all transmit signal processing functions required between digital baseband and the power amplifier. The phase noise level of the designed IF PLL frequency synthesizer is -114dBc/Hz@100kHz and the lock time is less than $300{\mu}s$. It consumes 5.3mA from a 3V power supply. The conversion gain and OIP3 of the IF mixer block are 3.6dB and -11.3dBm. It consumes 5.3mA. The 3dB frequencies of the VGA are greater than 250MHz for all gain settings. The designed VGA consumes 10mA. The designed RF block exhibits a gain of 14.93dB and an OIP3 of 6.97dBm. The image and carrier suppressions are 35dBc and 31dBc, respectively. It consumes 63.4mA. The designed circuits are under fabrication using a $0.35{\mu}m$ CMOS process. The designed entire chip consumes 84mA from a 3V supply, and its area is $1.6㎜{\times}3.5㎜$.

  • PDF

A Design of Digital CMOS X-ray Image Sensor with $32{\times}32$ Pixel Array Using Photon Counting Type (포톤 계수 방식의 $32{\times}32$ 픽셀 어레이를 갖는 디지털 CMOS X-ray 이미지 센서 설계)

  • Sung, Kwan-Young;Kim, Tae-Ho;Hwang, Yoon-Geum;Jeon, Sung-Chae;Jin, Seung-Oh;Huh, Young;Ha, Pan-Bong;Park, Mu-Hun;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.7
    • /
    • pp.1235-1242
    • /
    • 2008
  • In this paper, x-ray image sensor of photon counting type having a $32{\times}32$ pixel array is designed with $0.18{\mu}m$ triple-well CMOS process. Each pixel of the designed image sensor has an area of loot $100{\times}100\;{\mu}m2$ and is composed of about 400 transistors. It has an open pad of an area of $50{\times}50{\mu}m2$ of CSA(charge Sensitive Amplifier) with x-ray detector through a bump bonding. To reduce layout size, self-biased folded cascode CMOS OP amp is used instead of folded cascode OP amp with voltage bias circuit at each single-pixel CSA, and 15-bit LFSR(Linear Feedback Shift Register) counter clock generator is proposed to remove short pulse which occurs from the clock before and after it enters the counting mode. And it is designed that sensor data can be read out of the sensor column by column using a column address decoder to reduce the maximum current of the CMOS x-ray image sensor in the readout mode.

Image-rejection down-conversion mixer for bluetooth application using CMOS (CMOS를 이용한 Bluetooth용 이미지 제거 하향 주파수 변환기 설계)

  • 김대연;이진택;오승민;이상국
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.365-368
    • /
    • 2000
  • This paper describes image-rejection down conversion mixer for bluetooth application using 0.35u CMOS process. the proposed architecture is composed of LO phase shifter, mixer core, IF buffer, and IF phase shifter. IF phase shifter is designed using polyphase fillet. Simulation results show conversion gain = l0㏈, input 1㏈ compression point = -15.7㏈m. input third-order intercept point(IIP3) = -4.4㏈m, and image-rejection ratio = 37.8㏈, respectively, at 3V supply voltage, and 15.7㎃ current.

  • PDF

Power 소자 기술

  • Lee, Sang-Gi
    • The Magazine of the IEIE
    • /
    • v.42 no.7
    • /
    • pp.45-53
    • /
    • 2015
  • Power 소자 기술은 digital & mixed signal device와 on-chip 구현을 위해서 CMOS 공정에 대한 기본 이해가 필요하다. CMOS 공정 기반 위에 power device 공정을 추가하면서 다양한 operation voltage의 power 소자를 구현하고, passive device 들을 동일 공정에서 구현하여 다양한 components 들로 power IC 제품을 design 할 수 있도록 modular process를 제공하는 것이 중요하다. 또한 power device로 주로 사용되는 LDMOS 소자에 대한 performance 개선을 위해 simulation을 통해 key device parameter들의 특성을 예측하고, 구조를 설계하는 것이 Si process 전에 중요한 일 중의 하나이다. 아울러 power management가 potable power, consumer electronics 및 green energy에서 가장 빠르게 성장하는 분야이므로, 차별화된 power 소자 기술을 확보하여 급변하는 시장 환경에 대응하는 것이 필요하다.

Design of Circuit for a Fingerprint Sensor Based on Ridge Resistivity

  • Jung, Seung-Min
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.3
    • /
    • pp.270-274
    • /
    • 2008
  • This paper proposes an advanced signal processing circuit for a fingerprint sensor based on ridge resistivity. A novel fingerprint integrated sensor using ridge resistivity variation resulting from ridges and valleys on the fingertip is presented. The pixel level simple detection circuit converts from a small and variable sensing current to binary voltage out effectively. The sensor circuit blocks were designed and simulated in a standard CMOS 0.35 ${\mu}m$ process.