• Title/Summary/Keyword: CMOS 툴

Search Result 26, Processing Time 0.021 seconds

Two Stage CMOS Class E RF Power Amplifier (2단 CMOS Class E RF 전력증폭기)

  • 최혁환;김성우;임채성;오현숙;권태하
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.1
    • /
    • pp.114-121
    • /
    • 2003
  • In this paper, low voltage and two stage CMOS Class E RF power amplifier for ISM(Industrial/Scientific/Medical) Open Band is presented. The power amplifier operates at 2.4GHz frequency, and is designed and simulated with a 0.35um CMOS technology and HSPICE simulator. The power amplifier is simple structure of two stage Class E power amplifier. The design procedure determing matching network was presented. The power amplifier is composed of input stage matching network, preamplifier, interstage matching network, power amplifier, and output stage matching network. The matching networks of input stage and interstage were constituted by pi($\pi$) type and L type respectively. At 2.4GHz operating frequency, and with a 2.5V supply voltage, the power amplifier delivers 23dBm output power to a 50${\Omega}$ load with 39% power added efficiency(PAE).

P&R Porting & Test-chip implementation Using Standard Cell Libraries (표준 셀 라이브러리 P&R 포팅과 테스트 칩의 설계)

  • Lim, Ho-Min;Kim, Nam-Sub;Kim, Jin-Sang;Cho, Won-Kyung
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.2
    • /
    • pp.206-210
    • /
    • 2003
  • In this paper, we design standard cell libraries using the 0.18um deep submircom CMOS process, and port them into a P&R (Placement and Routing) CAD tool. A simple test chip has been designed in order to verify the functionalities of the 0.18um standard cell libraries whose technical process was provided by Anam semiconductor. Through these experiments, we have found that the new 0.18um CMOS process can be successfully applied to automatic digital system design.

  • PDF

Digital Logic Extraction from QCA Designs (QCA 설계에서 디지털 논리 자동 추출)

  • Oh, Youn-Bo;Kim, Kyo-Sun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.1
    • /
    • pp.107-116
    • /
    • 2009
  • Quantum-dot Cellular Automata (QCA) is one of the most promising next generation nanoelectronic devices which will inherit the throne of CMOS which is the domineering implementation technology for large scale low power digital systems. In late 1990s, the basic operations of the QCA cell were already demonstrated on a hardware implementation. Also, design tools and simulators were developed. Nevertheless, its design technology is not quite ready for ultra large scale designs. This paper proposes a new approach which enables the QCA designs to inherit the verification methodologies and tools of CMOS designs, as well. First, a set of disciplinary rules strictly restrict the cell arrangement not to deviate from the predefined structures but to guarantee the deterministic digital behaviors is proposed. After the gate and interconnect structures of. the QCA design are identified, the signal integrity requirements including the input path balancing of majority gates, and the prevention of the noise amplification are checked. And then the digital logic is extracted and stored in the OpenAccess common engineering database which provides a connection to a large pool of CMOS design verification tools. Towards validating the proposed approach, we designed a 2-bit adder, a bit-serial adder, and an ALU bit-slice. For each design, the digital logic is extracted, translated into the Verilog net list, and then simulated using a commercial software.

VLSI Design of DWT-based Image Processor for Real-Time Image Compression and Reconstruction System (실시간 영상압축과 복원시스템을 위한 DWT기반의 영상처리 프로세서의 VLSI 설계)

  • Seo, Young-Ho;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1C
    • /
    • pp.102-110
    • /
    • 2004
  • In this paper, we propose a VLSI structure of real-time image compression and reconstruction processor using 2-D discrete wavelet transform and implement into a hardware which use minimal hardware resource using ASIC library. In the implemented hardware, Data path part consists of the DWT kernel for the wavelet transform and inverse transform, quantizer/dequantizer, the huffman encoder/huffman decoder, the adder/buffer for the inverse wavelet transform, and the interface modules for input/output. Control part consists of the programming register, the controller which decodes the instructions and generates the control signals, and the status register for indicating the internal state into the external of circuit. According to the programming condition, the designed circuit has the various selective output formats which are wavelet coefficient, quantization coefficient or index, and Huffman code in image compression mode, and Huffman decoding result, reconstructed quantization coefficient, and reconstructed wavelet coefficient in image reconstructed mode. The programming register has 16 stages and one instruction can be used for a horizontal(or vertical) filtering in a level. Since each register automatically operated in the right order, 4-level discrete wavelet transform can be executed by a programming. We synthesized the designed circuit with synthesis library of Hynix 0.35um CMOS fabrication using the synthesis tool, Synopsys and extracted the gate-level netlist. From the netlist, timing information was extracted using Vela tool. We executed the timing simulation with the extracted netlist and timing information using NC-Verilog tool. Also PNR and layout process was executed using Apollo tool. The Implemented hardware has about 50,000 gate sizes and stably operates in 80MHz clock frequency.

A New Structural Carry-out Circuit in Full Adder (새로운 구조의 전가산기 캐리 출력 생성회로)

  • Kim, Young-Woon;Seo, Hae-Jun;Han, Se-Hwan;Cho, Tae-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.12
    • /
    • pp.1-9
    • /
    • 2009
  • A full adders is an important component in applications of digital signal processors and microprocessors. Thus it is imperative to improve the power dissipation and operating speed for designing a full adder. We propose a new adder with modified version of conventional static CMOS and pass transistor logic. The carry-out generation circuit of the proposed full adder is different from the conventional XOR-XNOR structure. The output Cout of module III is generated from input A, B and Cin directly without passing through module I as in conventional structure. Thus output Cout is faster by reducing operation step. The proposed module III uses the static CMOS logic style, which results full-swing operation and good driving capability. The proposed 1bit full adder has the advantages over the conventional static CMOS, CPL, TGA, TFA, HPSC, 14T, and TSAC logic. The delay time is improved by 4.3% comparing to the best value known. PDP(power delay product) is improved by 9.8% comparing to the best value. Simulation has been carried out using a $0.18{\mu}m$ CMOS design rule for simulation purposes. The physical design has been verified using HSPICE.

A Path Control Switch Chip for an Unidirectional Path Swithced Ring (단방향 경로 스위칭 링을 위한 경로 제어 스위치 소자)

  • 이상훈
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.8A
    • /
    • pp.1245-1251
    • /
    • 1999
  • A 1.25Gb/s path control switch chip has been designed and implemented with COMPASS tool and 0.8${\mu}{\textrm}{m}$ CMOS gate-array of LG semiconductor. This device controls the path of digital singnals in SDH-based transmission system. The proposed switch chip is suitable for self-healing operations both in a linear network and an unidirectonal ring, The self-healing operation of the switch is effectively done by the configuration information stored in the resisters of the switch. The test device adapted to SDH-based transmission system, show immediate restoration and a 10-11~10-12 bit error raito. And 2.5Gb/s or more high throughput can be realized by combining rwo identical or more switches with the parallel architecture.

  • PDF

An Object-Oriented Redundant Fault Detection Scheme for Efficient Current Testing (전류 테스팅을 위한 객체 기반의 무해고장 검출 기법)

  • Bae, Sung-Hwan;Kim, Kwan-Woong;Chon, Byoung-Sil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.1C
    • /
    • pp.96-102
    • /
    • 2002
  • Current testing(Iddq testing) on monitoring the quiescent power supply current is an efficient and effective method for CMOS bridging faults. The applicability of this technique, however, requires careful examination. Since cardinality of bridging fault is O($n^2$) and current testing requires much longer testing time than voltage testing, it is important to note that a bridging fault is untestable if the two bridged nodes have the same logic values at all times. Such faults should be identified by a good ATPG tool; otherwise, the fault coverage can become skewed. In this paper, we present an object-oriented redundant fault detection scheme for efficient current testing. Experimental results for ISCAS benchmark circuits show that the improved method is more effective than the previous ones.

The Design and Synthesis of (204, 188) Reed-Solomon Decoder for a Satellite Communication (위성통신을 위한 (204, 188) Reed-Solomon Decoder 설계 및 합성)

  • 신수경;최영식;이용재
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.648-651
    • /
    • 2001
  • This paper describes the 8-error-correction (204, 188) Reed-Solomon Decode. over GF(2$^{8}$ ) for a satellite communication. It is synthsized using a CMOS library. Decoding algorithm of Reed-Solomon codes consists of four steps which are to compute syndromes, to find error-location polynomial, to decide error-location, and to slove error-values. The decoder is designed using Modified Euclid algorithm in this paper. First of all, The functionalities of the circuit are verified through C++ programs, and then it is designed in Verilog HDL. It is verified through the logic simulations of each blocks. Finally, The Reed-Solomon Decoder is synthesized with Synopsys Tool.

  • PDF

Fingerprint Sensor Based on a Skin Resistivity with $256{\times}256$ pixel array ($256{\times}256$ 픽셀 어레이 저항형 지문센서)

  • Jung, Seung-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.531-536
    • /
    • 2009
  • In this paper, we propose $256{\times}256$ pixel array fingerprint sensor with an advanced circuits for detecting. The pixel level simple detection circuit converts from a small and variable sensing current to binary voltage out effectively. We minimizes an electrostatic discharge(ESD) influence by applying an effective isolation structure around the unit pixel. The sensor circuit blocks were designed and simulated in standard CMOS $0.35{\mu}m$ process. Full custom layout is performed in the unit sensor pixel and auto placement and routing is performed in the full chip.

An Analysis on the Simulation Modeling for Latch-Up Minimization by High Energy Implantation of Advanced CMOS Devices (차세대 CMOS구조에서 고에너지 이온주입에 의한 래치업 최소화를 위한 모델 해석)

  • Roh, Byeong-Gyu;Cho, So-Haeng;Oh, Hwan-Sool
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.2
    • /
    • pp.48-54
    • /
    • 1999
  • We designed the optimal device parameters of the retrograde well and the gettering layer(buried layer) using the high energy ion implantation for the next generation of CMOS struoture and proposed two models and simulated these models with Athena and Atlas, Silvaco Co. We obtained trigger currents which is more than 600 ${\mu}A/{\mu}m$ when the structure has been combined the gettering layer and the retrograde well. And the second model(twin retrograde well) was obtained that holdingcurrents were over 2500${\mu}A/{\mu}m$. As results, the more heavier dose, the more improved the latch-up immunity. The n'-p' spacing was fixed a 2${\mu}m$ in both models.

  • PDF