• Title/Summary/Keyword: CFRP plate

Search Result 166, Processing Time 0.028 seconds

Flexural Behavior of RC Beams Strengthened with CFRP Plate Using Multi-directional Channel-type Anchorage System (다방향 채널형 단부정착장치를 이용한 CFRP판 보강 RC 보의 휨거동)

  • Hong, Ki Nam;Han, Sang Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.171-180
    • /
    • 2008
  • The aim of this paper is to clarify the structural performance of RC beams strengthened with Carbon Fibre Reinforced Polymer(CFRP) plates using channel-type anchorage system. Twelve RC beams were specifically designed without and with a channel-type anchorage system, which was carefully detailed to enhance the benefits of the strengthening plates. All the twelve beams were identical in terms of their geometry but varied in their internal reinforcement, concrete strength. All the beams were tested under four point bending and extensively instrumented to monitor strains, cracking, load capacity and failure modes. The structural response of all the twelve beams is then critically analyzed in terms of deformability, strength and failure processes. It is shown that with a channel-type anchorage system, a brittle debonding failure of a strengthened beam can be transformed to an almost ductile failure with well-defined enhancement of structural performance in terms of both deformation and strength.

Multi-stage Compression Molding Technology of Fast Curing CF/Epoxy Prepreg (속경화용 탄소섬유/에폭시 프리프레그의 다단 압축 성형기술)

  • Kwak, Seong-Hun;Mun, Ji-Hun;Hong, Sang-Hwui;Kwon, Soon-Deok;Kim, Byung-Ha;Kim, Tae-Yong
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.269-276
    • /
    • 2021
  • PCM (Prepreg Compression Molding) process is a high-speed molding technology that can manufacture high-quality CFRP (Carbon Fiber Reinforced Plastic) parts. Compared to the autoclave process, it generates less waste and can significantly reduce cycle time, so various studies are being conducted in the aerospace and automobile industries. In this study, in order to improve the quality of the PCM process, a molding method was developed to increase the compression pressure of the press step by step according to the curing behavior of the prepreg. It was confirmed that this multi-stage compression molding technology is a good means to produce high-quality CFRP products and shorten cycle times. And, the laminated prepreg at room temperature was immediately put into the mold and preheated and molded at the same time, so that it could be molded without a separate preheating process. In addition, as a result of applying the same process conditions optimized for flat plate molding to three-dimensional shapes, a product similar to a flat plate in appearance could be made without the process of establishing process conditions.

Long-Term Behavior of CFRP Strips under Sustained Loads (지속하중을 받는 탄소섬유판의 장기 거동)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.139-146
    • /
    • 2009
  • Experimental study was performed to evaluate the long-term behavior of CFRP (carbon fiber reinforced polymer) strips under sustained loads including prestressing force in strengthening RC members with post-tensioned CFRP strips. Two types of CFRP strip such as unidirectional CFRP strip and hybrid CFRP strip which is composed of carbon fiber and steel plate were considered. Also two types of loading scheme were included in this study. Direct sustained loading test had been carried out to estimate the creep deformation and relaxation of CFRP strips including slip deformation at both mechanical anchorages for over 700 days. Also, flexural sustained loading test had been conducted to estimate the initial prestress losses on clamping the CFRP strips at jacking anchorages for over 90 days. From the sustained loading tests, it was observed that stress losses of unidirectional CFRP strips due to the creep deformation and relaxation of material itself and slip deformation at mechanical anchorage were ignorable. On the other hand, significant stress losses caused by the yielding of steel embedded in CFRP strips were found in case of hybrid CFRP strips due to the initial jacking force over steel yielding stress. Also, initial prestress losses during setting of CFRP strips on mechanical anchorage were about 10% of intial jacking force, which must be considered in the design.

Experimental Verification of Flexural Response for Strengthened R/C Beams by Stirrup Partial-Cutting Near Surface Mounted Using CFRP Plate (CFRP 플레이트 적용 스터럽 부분절단형 표면매립공법으로 보강된 철근콘크리트 보의 휨 거동에 대한 실험적 평가)

  • Oh, Hong-Seob;Sim, Jong-Sung;Ju, Min-Kwan;Lee, Gi-Hong
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.671-679
    • /
    • 2008
  • The near surface mounted (NSM) FRP strengthening method has been conventionally applied for strengthening the deteriorated concrete structures. The NSM strengthening method, however, has been issued with the problem of limitation of the cutting depth which is usually considered as concrete cover depth. This may be related with degradation of bonding performance in long-term service state. To improve the debonding problem, in this study, the Stirrup partial-cutting NSM (SCNSM) strengthening method using CFRP plate was newly developed. SCNSM strengthening method can be effectively applied to the deteriorated concrete structure without any troubles of insufficient cutting depth. To experimentally verify the structural behavior, the flexural test of the concrete beam by using the SCNSM strengthening method was conducted with the test variable as the strengthening length (32%, 48%, 70%, 80%, 96% of span length). In the result of the test, the NSM and SCNSM strengthened specimen showed similar structural behavior with load-deflection, mode of failure. Additionally, there was no apparent structural degradation by the stirrup partial-cutting. Consequently, it was evaluated that the SCNSM strengthening method can be useful for seriously damaged concrete structures that is hard to apply the conventional NSM strengthening method for increasing the structural capacity.

Using XFEM technique to predict the damage of unidirectional CFRP composite notched under tensile load

  • Benzaama, A.;Mokhtari, M.;Benzaama, H.;Gouasmi, S.;Tamine, T.
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.1
    • /
    • pp.129-139
    • /
    • 2018
  • The composite materials are widely used in aircraft structures. Their relative rigidity/weight gives them an important advantage over the metal structures. The objective of this work is to analyze by the finite element method the mechanical behavior of composite plate type notched with various forms under tensile load. Two basic parameters were taken into consideration. The first, the form of the notch in order to see its effect on the stress and the failure load. The second, we studied the influence of the locale orientation of fiber around the plate's notch. These parameters are studied in order to see their effects on the distribution stress and failure load of the plate. The calculation of the failure load is determined numerically with the numerical code ABAQUS using the XFEM (extended Finite Element Modeling) based on the fracture mechanics. The result shows clearly that it is important to optimize the effect of fiber orientation around the notch.

Flexural Strengthening Effect on R.C Beam with Structural Damage (구조적 손상을 입은 R.C보의 휨보강 효과)

  • Kim, Sung-Yong;Han, Duck-Jeon;Shin, Chang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.147-156
    • /
    • 2004
  • The Rehabilitation and repair of structurally deteriorated, reinforced concrete structures will be highly demanded in the near future. The purpose of this study is to investigate whether damaged beams that crack and deflection are developed by bending moment are restored to the former state. In conclusion, when specimens strengthened with Steel Plate, CFS(Carbon Fiber Sheet) and CFRP-Grid(Carbon Fiber Reinforced Plastic-Grid) are compared with standard specimen, flexural capacity is increased and ductility and energy absorbtion capacity are similar with undamaged specimen. Therefore Steel Plate, CFS(Carbon Fiber Sheet) and CFRP-Grid (Carbon Fiber Reinforced Plastic-Grid) have highly efficiency as material of flexural strengthening.

Analysis and modeling of hyperstatic RC beam bonded by composite plate symmetrically loaded and supported

  • Abderezak, Rabahi;Daouadji, Tahar Hassaine;Rabia, Benferhat
    • Steel and Composite Structures
    • /
    • v.45 no.4
    • /
    • pp.591-603
    • /
    • 2022
  • The flexural strengthening of reinforced concrete beams by external bonding of composite materials has proved to be an efficient and practical technique. This paper presents a study on the flexural performance of reinforced concrete continuous beams with three spans (one span and two cantilevered) strengthened by bonding carbon fiber fabric (CFRP). The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened continuous beam, i.e., the continuous concrete beam, the FRP plate and the adhesive layer. The adherend shear deformations have been included in the present theoretical analyses by assuming a linear shear stress through the thickness of the adherends. Remarkable effect of shear deformations of adherends has been noted in the results. The theoretical predictions are compared with other existing solutions that shows good agreement, and It shows the effectiveness of CFRP strips in enhancing shear capacity of continuous beam. It is shown that both the normal and shear stresses at the interface are influenced by the material and geometry parameters of the composite beam.

A Study on the Impact Damage and Residual Bending Strength of CF/EPOXY Composite Laminate Plates Under High Temperature (고온분위기하에서 탄소섬유강화 복합재적층판의 충격손상과 잔류굽힘강도)

  • 양인영;박정수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.1930-1938
    • /
    • 1994
  • In this paper, the effects of temperature change on the impact of CFRP laminates was experimentally studied. Composite laminates used for this experiment are CFRP orthotropic laminated plates, which have two-interfaces$[0_6^{\circ}/90_7^{\circ}]_s$ and four-interfaces$[0_3^{\circ}/90_6^{\circ}/0_3^{\circ}]_s$. The interrelations between the impact energy vs. delamination area, the impact energy vs. residual bending strength, and the interlayer delamination area vs. the decrease of the residual flexural strength of carbon fiber epoxy composite laminates subjected to FOD(Foreign Object Damage) under high temperatures were experimentally observed.

Considerations in the Safety Evaluation of the Lateral Structural Members Reinforced with Steel Plate or CFRP Sheet (강판 또는 탄소섬유시트 보강된 수평 구조 부재의 안전성 평가시 고려사항)

  • 강석원;박형철;오보환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.331-334
    • /
    • 2003
  • Since regulation or specification for the reinforcing method are quite ambiguous, structural design for the reinforcement can be subjectively and arbitrarily conducted. Thus, reasonable limitation and guide for the quantity of the reinforcement are required for the safe use of the structure after repair. In order to guarantee the safety of the structural member several items should be considered; reinforcing limit to avoid the brittle failure, least required strength of the existing member before reinforcement in order not to fail under the new serviceability load condition when reinforcing steel plates or CFRP sheets are harmed or subjected to fire.

  • PDF

Comparative Study on the Strengthening Effect of R/C Beams with Rebar, Steel Plate of CFRP (철근, 강판 및 CFRP를 적용한 R/C보의 보강효과 비교연구)

  • 심종성;황의승;최완철;배인환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.323-327
    • /
    • 1996
  • Reinforced concrete(R/C) structures need repair and rehabilitation due to the deterioration such as a crack, spalling and disintergration. Numerous repair materials which are currently used in construction fields without any regulation are examined in terms of their serviceabilities and effectiveness. In this paper section of existing R/C beams are enlarged with repair materials, that is, epoxy, latex or premix. And then they are strengthened with rebar, steel poate of CFRP on the tension face. Structural behaviors of strengthened beams are investigated both statically and dynamically and they are compared with each. This paper summarizes the overall research plan.

  • PDF