Browse > Article
http://dx.doi.org/10.12989/aas.2018.5.1.129

Using XFEM technique to predict the damage of unidirectional CFRP composite notched under tensile load  

Benzaama, A. (Departement de Genie Maritime, Universite des Sciences et de la Technologie d'Oran USTOMB)
Mokhtari, M. (Laboratoire de Recherche en Technologie de Fabrication Mecanique, Ecole Nationale Polytechnique)
Benzaama, H. (Laboratory of applied Biomechanics and Biomaterials, Ecole Nationale Polytechnique)
Gouasmi, S. (Laboratoire de Mecanique de Structure et des Solides (LMSS), University of Sidi Bel Abbes)
Tamine, T. (Departement de Genie Maritime, Universite des Sciences et de la Technologie d'Oran USTOMB)
Publication Information
Advances in aircraft and spacecraft science / v.5, no.1, 2018 , pp. 129-139 More about this Journal
Abstract
The composite materials are widely used in aircraft structures. Their relative rigidity/weight gives them an important advantage over the metal structures. The objective of this work is to analyze by the finite element method the mechanical behavior of composite plate type notched with various forms under tensile load. Two basic parameters were taken into consideration. The first, the form of the notch in order to see its effect on the stress and the failure load. The second, we studied the influence of the locale orientation of fiber around the plate's notch. These parameters are studied in order to see their effects on the distribution stress and failure load of the plate. The calculation of the failure load is determined numerically with the numerical code ABAQUS using the XFEM (extended Finite Element Modeling) based on the fracture mechanics. The result shows clearly that it is important to optimize the effect of fiber orientation around the notch.
Keywords
CFRP (reinforced carbon fiber polymers); XFEM (extended finite element modeling);
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Davis, D.C. and Whelan, B.D. (2011), "An experimental study of interlaminar shear fracture toughness of a nanotube reinforced composite", Compos. B Eng., 42,105-116.   DOI
2 Koerber, H. and Camanho, P.P. (2009), "Characterisation of unidirectional carbon epoxy IM7-8552 in longitudinal compression under high strain rates", Proceedings of the 3rd International Conference on Integrity, Reliab. Fail.
3 Marlett, K. (2011), Hexcel 8552 IM7 Unidirectional Prepreg 190 gsm & 35% RC Qualification Material Property Data Report.
4 Moes, N., Dolbow, J. and Belytschko T. (1999), "A finite element method for crack growth without remeshing", J. Numer. Meth. Eng., 46(1), 132-150.
5 Moreno, M.C.S., Curiel-Sosa, J.L., Navarro-Zafra, J., Martinez Vicente, J.L. and Lopez Cela, J.J. (2015), "Crack propagation in a chopped glass-reinforced composite under biaxial testing by means of XFEM", Compos. Struct., 119, 264-271.   DOI
6 Motamedi, D. (2013), "Nonlinear XFEM modeling of delamination in fiber reinforced composites considering uncertain fracture properties and effect of fiber bridging", Ph.D. Dissertation, University of British Columbia, Canada.
7 Nagashima, T. and Suemasu, H. (2006), "Stress analyses of composite laminate with delamination using XFEM", J. Comput. Meth., 3(4), 521.   DOI
8 Neuber, H. (1961), "Theory of stress concentration for shear strained prismatic bodies with nonlinear stress-strain law", J. Appl. Mech., 28(4), 544-550.   DOI
9 Pilkey, W. and Peterson's, D. (1997), Stress Concentration Factors, Wiley, New York, U.S.A.
10 Qian, Z.D. and Jing, H. (2012), "Fracture properties of epoxy asphalt mixture based on extended finite element method", J. Centr. South Univ., 19(11), 3335.   DOI
11 Victor, M., Marianne, P., Marie-Laetitia, P., Helene, W., Arthur, C. and Moussa, K. (2015), "Determination of the elastic properties in CFRP composites: Comparison of different approaches based on tensile tests and ultrasonic characterization", Adv. Aircr. Spacecr. Sci., 2(3), 249.   DOI
12 Seyhan, A.T. Tanoglu, M. and Schulte, K. (2008), "Mode I and mode II fracture toughness of e-glass non-crimp fabric/carbon nanotube (CNT) modified polymer based composites", Eng. Fract. Mech., 75, 5151-5162.   DOI
13 Tan, J.L.Y., Deshpande, V.S. and Fleck, N.A. Prediction of Failure in Notched CFRP Laminates Under Multi-Axial Loading, Cambridge University Engineering Dept., Trumpington St., Cambridge, CB2 1PZ, U.K.
14 Tseng, C.H., Wang, C.C. and Chen, C.Y. (2007), "Functionalizing carbon nanotubes by plasma modification for the preparation of covalent-integrated epoxy composites", Chem. Mater., 19, 308-315.   DOI
15 Camanho, P.P., Maimi, P. and Davila, C.G. (2007), "Prediction of size effects in notched laminates using continuum damage mechanics", Compos. Sci. Technol., 67, 2715-2727.   DOI
16 ABAQUS, Abaqus Version (2009), 6.9 Documentation, Providence, RI: DassaultSystemesSimulia Corporation.
17 Belytschko, T. and Black, T. (1999), "Elastic crack growth in finite elements with minimal remeshing", J. Numer. Meth. Eng., 45(5), 601-620.   DOI
18 Benvenuti, E., Vitarelli, O. and Tralli, A. (2012), "Delamination of FRP-reinforced concrete by means of an extended finite element formulation", Compos. Part B: Eng., 43(8), 3258-3269.   DOI
19 Curiel Sosa, J.L. and Karapurath, N. (2012), "Delamination modelling of GLARE using the extended finite element method", Compos. Sci. Technol.