DOI QR코드

DOI QR Code

Using XFEM technique to predict the damage of unidirectional CFRP composite notched under tensile load

  • Benzaama, A. (Departement de Genie Maritime, Universite des Sciences et de la Technologie d'Oran USTOMB) ;
  • Mokhtari, M. (Laboratoire de Recherche en Technologie de Fabrication Mecanique, Ecole Nationale Polytechnique) ;
  • Benzaama, H. (Laboratory of applied Biomechanics and Biomaterials, Ecole Nationale Polytechnique) ;
  • Gouasmi, S. (Laboratoire de Mecanique de Structure et des Solides (LMSS), University of Sidi Bel Abbes) ;
  • Tamine, T. (Departement de Genie Maritime, Universite des Sciences et de la Technologie d'Oran USTOMB)
  • Received : 2017.04.30
  • Accepted : 2017.09.15
  • Published : 2018.01.25

Abstract

The composite materials are widely used in aircraft structures. Their relative rigidity/weight gives them an important advantage over the metal structures. The objective of this work is to analyze by the finite element method the mechanical behavior of composite plate type notched with various forms under tensile load. Two basic parameters were taken into consideration. The first, the form of the notch in order to see its effect on the stress and the failure load. The second, we studied the influence of the locale orientation of fiber around the plate's notch. These parameters are studied in order to see their effects on the distribution stress and failure load of the plate. The calculation of the failure load is determined numerically with the numerical code ABAQUS using the XFEM (extended Finite Element Modeling) based on the fracture mechanics. The result shows clearly that it is important to optimize the effect of fiber orientation around the notch.

Keywords

References

  1. ABAQUS, Abaqus Version (2009), 6.9 Documentation, Providence, RI: DassaultSystemesSimulia Corporation.
  2. Belytschko, T. and Black, T. (1999), "Elastic crack growth in finite elements with minimal remeshing", J. Numer. Meth. Eng., 45(5), 601-620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
  3. Benvenuti, E., Vitarelli, O. and Tralli, A. (2012), "Delamination of FRP-reinforced concrete by means of an extended finite element formulation", Compos. Part B: Eng., 43(8), 3258-3269. https://doi.org/10.1016/j.compositesb.2012.02.035
  4. Camanho, P.P., Maimi, P. and Davila, C.G. (2007), "Prediction of size effects in notched laminates using continuum damage mechanics", Compos. Sci. Technol., 67, 2715-2727. https://doi.org/10.1016/j.compscitech.2007.02.005
  5. Curiel Sosa, J.L. and Karapurath, N. (2012), "Delamination modelling of GLARE using the extended finite element method", Compos. Sci. Technol.
  6. Davis, D.C. and Whelan, B.D. (2011), "An experimental study of interlaminar shear fracture toughness of a nanotube reinforced composite", Compos. B Eng., 42,105-116. https://doi.org/10.1016/j.compositesb.2010.06.001
  7. Koerber, H. and Camanho, P.P. (2009), "Characterisation of unidirectional carbon epoxy IM7-8552 in longitudinal compression under high strain rates", Proceedings of the 3rd International Conference on Integrity, Reliab. Fail.
  8. Marlett, K. (2011), Hexcel 8552 IM7 Unidirectional Prepreg 190 gsm & 35% RC Qualification Material Property Data Report.
  9. Moes, N., Dolbow, J. and Belytschko T. (1999), "A finite element method for crack growth without remeshing", J. Numer. Meth. Eng., 46(1), 132-150.
  10. Moreno, M.C.S., Curiel-Sosa, J.L., Navarro-Zafra, J., Martinez Vicente, J.L. and Lopez Cela, J.J. (2015), "Crack propagation in a chopped glass-reinforced composite under biaxial testing by means of XFEM", Compos. Struct., 119, 264-271. https://doi.org/10.1016/j.compstruct.2014.08.030
  11. Motamedi, D. (2013), "Nonlinear XFEM modeling of delamination in fiber reinforced composites considering uncertain fracture properties and effect of fiber bridging", Ph.D. Dissertation, University of British Columbia, Canada.
  12. Nagashima, T. and Suemasu, H. (2006), "Stress analyses of composite laminate with delamination using XFEM", J. Comput. Meth., 3(4), 521. https://doi.org/10.1142/S0219876206001181
  13. Neuber, H. (1961), "Theory of stress concentration for shear strained prismatic bodies with nonlinear stress-strain law", J. Appl. Mech., 28(4), 544-550. https://doi.org/10.1115/1.3641780
  14. Pilkey, W. and Peterson's, D. (1997), Stress Concentration Factors, Wiley, New York, U.S.A.
  15. Qian, Z.D. and Jing, H. (2012), "Fracture properties of epoxy asphalt mixture based on extended finite element method", J. Centr. South Univ., 19(11), 3335. https://doi.org/10.1007/s11771-012-1412-8
  16. Seyhan, A.T. Tanoglu, M. and Schulte, K. (2008), "Mode I and mode II fracture toughness of e-glass non-crimp fabric/carbon nanotube (CNT) modified polymer based composites", Eng. Fract. Mech., 75, 5151-5162. https://doi.org/10.1016/j.engfracmech.2008.08.003
  17. Tan, J.L.Y., Deshpande, V.S. and Fleck, N.A. Prediction of Failure in Notched CFRP Laminates Under Multi-Axial Loading, Cambridge University Engineering Dept., Trumpington St., Cambridge, CB2 1PZ, U.K.
  18. Tseng, C.H., Wang, C.C. and Chen, C.Y. (2007), "Functionalizing carbon nanotubes by plasma modification for the preparation of covalent-integrated epoxy composites", Chem. Mater., 19, 308-315. https://doi.org/10.1021/cm062277p
  19. Victor, M., Marianne, P., Marie-Laetitia, P., Helene, W., Arthur, C. and Moussa, K. (2015), "Determination of the elastic properties in CFRP composites: Comparison of different approaches based on tensile tests and ultrasonic characterization", Adv. Aircr. Spacecr. Sci., 2(3), 249. https://doi.org/10.12989/aas.2015.2.3.249

Cited by

  1. Quantitative assessment on the reinforcing behavior of the CFRP-PCM method on tunnel linings vol.25, pp.2, 2021, https://doi.org/10.12989/gae.2021.25.2.123