• Title/Summary/Keyword: CAPS marker

Search Result 38, Processing Time 0.035 seconds

Screening of the Dominant Rice Blast Resistance Genes with PCR-based SNP and CAPS Marker in Aromatic Rice Germplasm

  • Kim, Jeong-Soon;Ahn, Sang-Nag;Hong, Sung-Jun;Kwon, Jin-Hyeuk;Kim, Yeong-Ki;Jee, Hyeong-Jin;Shim, Chang-Ki
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.4
    • /
    • pp.329-341
    • /
    • 2011
  • The objective of this study was to determine the genetic diversities of major rice blast resistance genes among 84 accessions of aromatic rice germplasm. Eighty four accessions were characterized by a dominant 11 set of PCR-based SNP and CAPS marker, which showed the broad spectrum resistance and closest linkage to seven major rice blast resistance (R) genes, Pia, Pib, Pii, Pi5 (Pi3), Pita (Pita-2), and Pi9 (t). The allele specific PCR markers assay genotype of SCAR and STS markers was applied to estimate the presence or absence of PCR amplicons detected with a pair of PCR markers. One indica accession, Basmati (IT211194), showed the positive amplicons of five major rice blast resistance genes, Pia, Pi5 (Pi3), Pib, Pi-ta (Pi-ta2), and Pik-5 (Pish). Among 48 accessions of the PCR amplicons detected with yca72 marker, only five accessions were identified to Pia gene on chromosome 11. The Pib gene was estimated with the NSb marker and was detected in 65 of 84 accessions. This study showed that nine of 84 accessions contained the Pii gene and owned Pi5 (Pi3) in 42 of 84 accessions by JJ817 and JJ113-T markers, which is coclosest with Pii on chromosome 9. Only six accessions were detected two alleles of the Pita or Pita-2 genes. Three of accessions were identified as the Pi9 (t) gene locus.

Validity Test for Molecular Markers Associated with Resistance to Phytophthora Root Rot in Chili Pepper (Capsicum annuum L.) (고추의 역병 저항성과 연관된 분자표지의 효용성 검정)

  • Lee, Won-Phil;Lee, Jun-Dae;Han, Jung-Heon;Kang, Byoung-Cheorl;Yoon, Jae-Bok
    • Horticultural Science & Technology
    • /
    • v.30 no.1
    • /
    • pp.64-72
    • /
    • 2012
  • Phytophthora root rot has been causing a serious yield loss in pepper production. Since 2004, the year in which commercial cultivars resistant to the disease were firstly commercialized, it has been necessary to introduce the resistance into domestic pepper cultivars for dried red pepper. Therefore, developing molecular markers linked to the resistance is required for an accurate selection of resistant plants and increasing breeding efficiency. Until now, several markers associated with the major dominant gene resistant to Phytophthora root rot have been reported but they have some serious limitations for their usage. In this study, we aimed to develop molecular markers linked to the major dominant gene that can be used for almost of all genetic resources resistant to Phytophthora root rot. Two segregating $F_2$ populations derived from a 'Subicho' ${\times}$ 'CM334' combination and a commercial cultivar 'Dokyacheongcheong' were used to develop molecular markers associated with the resistance. After screening 1,024 AFLP primer combinations with bulked segregant analysis, three AFLP (AFLP1, AFLP2, and AFLP3) markers were identified and converted into three CAPS markers (M1-CAPS, M2-CAPS, and M3-CAPS), respectively. Among them, M3-CAPS marker was further studied in ten resistants, fourteen susceptibles, five hybrids and 53 commercial cultivars. As a result, M3-CAPS marker was more fitted to identify Phytophthora resistance than previously reported P5-SNAP and Phyto5.2-SCAR markers. The result indicated that the M3-CAPS marker will be useful for resistance breeding to Phytophthora root rot in chili pepper.

Single Nucleotide Polymorphisms linked to the SlMYB12 Gene that Controls Fruit Peel Color in Domesticated Tomatoes (Solanum lycopersicum L.)

  • Kim, Bichsaem;Kim, Nahui;Kang, Jumsoon;Choi, Youngwhan;Sim, Sung-Chur;Min, Sung Ran;Park, Younghoon
    • Horticultural Science & Technology
    • /
    • v.33 no.4
    • /
    • pp.566-574
    • /
    • 2015
  • Yellow or transparent fruit peel color is caused by the accumulation or lack of naringenin chalcone (NG, C) in fruit peel and determines the red or pink appearance of tomato fruit, respectively. NGC biosynthesis is regulated by the SlMYB12 gene of the Y locus on chromosome 1, and DNA markers derived from SlMYB12 would be useful for marker-assisted selection (MAS) of tomato fruit color. To develop a gene-based marker, 4.9 kb of the SlMYB12 gene including a potential promoter region was sequenced from the red-fruited (YY) line 'FCR' and pink-fruited (yy) line 'FCP'. Sequence alignment of these SlMYB12 alleles revealed no sequence variations between 'FCR' and 'FCP'. To identify SlMYB12-linked single nucleotide polymorphisms (SNPs), 'FCR' and 'FCP' were genotyped using a SolCAP Tomato SNP array and CAPS markers (CAPS-456, 531, 13762, and 38123) were developed from the four SNPs (solcap_snp_sl_456, 531, 13762, and 38123) most closely flanking the SlMYB12. These CAPS markers were mapped using $F_2$ plants derived from 'FCR' ${\times}$ 'FCP'. The map positions of the fruit peel color locus (Y) were CAPS-13762 (0 cM) - 456 (11.09 cM) - Y (15.71 cM) - 38123 (17.82 cM) - 531 (30.86 cM), and the DNA sequence of SlMYB12 was physically anchored in the middle of CAPS-456 and CAPS-38123, indicating that fruit peel color in domesticated tomato is controlled by SlMYB12. A total of 64 SolCAP tomato germplasms were evaluated for their fruit peel color and SNPs located between solcap_snp_sl_456 and 38123. Seven SNPs that were detected in this interval were highly conserved for pink-fruited accessions and specific to transparent fruit peel traits, as depicted by a phenetic tree of 64 accessions based on the seven SNPs.

Development of Cleaved Amplified Polymorphic Sequence (CAPS) Marker for Selecting Powdery Mildew-Resistance Line in Strawberry (Fragaria×ananassa Duchesne) (딸기 흰가루병 저항성 계통 선발을 위한 분자마커 개발)

  • Je, Hee-Jeong;Ahn, Jae-Wook;Yoon, Hae-Suk;Kim, Min-Keun;Ryu, Jae-San;Hong, Kwang-Pyo;Lee, Sang-Dae;Park, Young-Hoon
    • Horticultural Science & Technology
    • /
    • v.33 no.5
    • /
    • pp.722-729
    • /
    • 2015
  • Powdery mildew (PM) caused by Podosphaera aphanis is a major disease that can result in significant yield losses in strawberry (Fragaria ${\times}$ ananassa Duchesne). For preventing PM, pesticides are usually applied in strawberry. In this study, molecular markers were developed to increase breeding efficiency of PM-resistance cultivars by marker-assisted selection (MAS). An $F_2$ population derived from a cross between PM-resistance 'Seolhyang' and PM-susceptibility 'Akihime' was evaluated for disease resistance to PM and RAPD (random amplification of polymorphic DNA)-BSA (bulked segregant analysis). Among 200 RAPD primers tested, OPE10 primer amplified a 311bp-band present in with 331bp. Sequence alignment performed for searching polymorphisms and six single nucleotide polymorphism (SNP) were found in amplified regions. To develop polymorphic marker for distinguishing between resistant and susceptible, RAPD was converted to cleaved amplified polymorphic sequence (CAPS) marker. Among restriction enzymes associated with six SNPs, Eae I (Y/GGCCR) was successfully digested to 231bp in susceptible. The results suggest that the selected CAPS marker could be used for increasing efficiency of selecting powdery mildew resistant strawberry in breeding system.

Development of CAPS marker for identifying a Formosan lily (Lilium formosanum) (흰나리(Lilium formosanum Wallace) 식별을 위한 CAPS 마커의 개발)

  • Chung, Sung Jin;Lee, Ka Youn;Yoon, A Ra;Jang, Ji Young;Kim, Jin Kug;Lee, Geung-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.2
    • /
    • pp.101-106
    • /
    • 2014
  • This study was conducted to identify lily species native to Korea from formosan lily (Lilium formosanum) belonging to Longiflorum section. Due to flowering time, flower color and orientation, long shelf life and resistant to diseases, the native lily species can be valuable genetic resources for interspecific hybrids. One of the chloroplast genes, matK, was used to clone and sequence to explore any base changes. The matK was successfully amplified into 1,539 bp (94% of the gene) and phylogenetic tree demonstrated 6 clades for those 11 lily species used in this study. There were one or two base substitutions among 10 lilies native to Korea, while formosan lily native to Taiwan exhibited 6 base substitutions in matK gene, rendering it genetically distant. A restriction enzyme NruI recognized one of the six base changes, and digested the matK gene of 10 native lily species only, but not in formosan lily. The confirmed cleavage characteristic of the target region in matK gene was designed into a CAPS (cleaved amplified polymorphic sequences) marker which will be available to estimate compatibility of interspecific hybridization and to trace the pedigree when those native lilies are crossed with the formosan lily.

Application of the Molecular Marker in Linkage Disequilibrium with Ms, a Restorer-of-fertility Locus, for Improvement of Onion Breeding Efficiency

  • Kim, Sujeong;Kim, Sunggil
    • Horticultural Science & Technology
    • /
    • v.33 no.4
    • /
    • pp.550-558
    • /
    • 2015
  • To analyze the linkage relationships among molecular markers recently reported to be linked to onion (Allium cepa L.) Ms, a restorer-of-fertility locus, in onion (Allium cepa L.), three single nucleotide polymorphism markers were converted into cleaved amplified polymorphic sequence (CAPS) markers based on onion transcriptome sequences and the rice genome database. Analysis of the recombinants selected from 4,273 segregating plants using CAPS and other linked markers demonstrated the jnurf13 and jnurf610 markers to perfectly co-segregate with the Ms locus. In contrast to jnurf13, the jnurf610 marker was not in perfect linkage disequilibrium with the Ms locus in diverse breeding lines. Thus, the jnurf13 marker and the marker for identification of cytoplasm types were utilized to enhance the efficiency of onion breeding through four applications. First, 89 maintainer lines containing the normal cytoplasm and homozygous recessive Ms genotypes were successfully identified from 100 breeding lines. Second, these two molecular markers were used to analyze the main sources of male-fertile contaminants frequently found in the male-sterile parental lines during F1 hybrid seed production. The majority of the contaminants contained heterozygous Ms genotypes, indicating that pollen grains harboring the dominant Ms genotype may have been introduced during propagation of the maintainer lines. Therefore, the genetic purity of the two maintainer lines was analyzed in the third application, and the results showed that both maintainer lines contained 13-21% off-types. Finally, the two markers were used to increase the seed yield potentials of two open-pollinated varieties containing sterile cytoplasms by removing the plants harboring homozygous recessive and heterozygous Ms genotypes.

Development of Functional Markers for Detection of Inactive DFR-A Alleles Responsible for Failure of Anthocyanin Production in Onions (Allium cepa L.)

  • Park, Jaehyuk;Cho, Dong Youn;Moon, Jin Seong;Yoon, Moo-Kyoung;Kim, Sunggil
    • Horticultural Science & Technology
    • /
    • v.31 no.1
    • /
    • pp.72-79
    • /
    • 2013
  • Inactivation of the gene coding for dihydroflavonol 4-reductase (DFR) is responsible for the color difference between red and yellow onions (Allium cepa L.). Two inactive DFR-A alleles, DFR-$A^{PS}$ and DFR-$A^{DEL}$, were identified in our previous study. A functional marker was developed on the basis of the premature stop codon that inactivated the DFR-$A^{PS}$ allele. A derived cleaved amplified polymorphic sequences (dCAPS) primer was designed to detect the single nucleotide polymorphism, an A/T transition, which produced the premature stop codon. Digested PCR products clearly distinguished the homozygous and heterozygous red $F_2$ individuals. Meanwhile, to develop a molecular marker for detection of the DFR-$A^{DEL}$ allele in which entire DFR-A gene was deleted, genome walking was performed and approximately 3 kb 5' and 3' flanking sequences of the DFR-$A^R$ coding region were obtained. PCR amplification using multiple primers binding to the extended flanking regions showed that more of the extended region of the DFR-A gene was deleted in the DFR-$A^{DEL}$ allele. A dominant simple PCR marker was developed to identify the DFR-$A^{DEL}$ allele using the dissimilar 3' flanking sequences of the DFR-A gene and homologous DFR-B pseudogene. Distribution of the DFR-$A^{PS}$ and DFR-$A^{DEL}$ alleles in yellow onion cultivars bred in Korea and Japan was surveyed using molecular makers developed in this study. Results showed predominant existence of the DFR-$A^{PS}$ allele in yellow onion cultivars.

Development of molecular marker for species authentication of Dendranthema indicum (L.) Des Moul. and D. boreale (Makino) Ling ex Kitam. (감국(Dendranthema indicum (L.) Des Moul.) 및 산국(D. boreale (Makino) Ling ex Kitam.)의 종판별 분자마커 개발)

  • Byeon, Jihui
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.66-66
    • /
    • 2018
  • 국화과(Compositae) 다년생 초본인 산국속(Dendranthema)은 국내 약 13여종이 자생하는 것으로 알려져 있으며, 이 중 감국(D. indicum (L.) Des Moul.)과 산국(D. boreale (Makino) Ling ex Kitam.), 구절초(D. zawadskii var. latilobum (Maxim.) Kitam.)가 주로 차 또는 한약재 등의 원료로 이용되고 있다. 차로 이용되는 꽃은 산국이 감국에 비해 상대적으로 작아서 구분이 가능하지만 시중에는 건조된 형태로 가공 유통되므로 육안으로 구분이 쉽지 않고, 산국 유래 제품들은 국내에서 감국 또는 국화로 혼용해서 표기되어 유통되고 있어 그 기원을 명확히 정립할 필요가 있다. 이에 본 연구는 감국과 산국의 분자유전학적 판별을 위해 DNA 바코드 후보 유전자를 활용하여 염기서열분석으로 확보된 SNP 및 InDel 정보를 바탕으로 CAPS 마커를 개발하고자 수행되었다. 감국과 산국 모두 trnL-trnF intergenic spacer 구간에서 약 1kb의 PCR 산물이 확인되었고, 이들 염기서열에서 분석한 2 SNP 및 3 InDel을 대상으로 CAPS 마커 개발을 위한 제한효소 사이트를 탐색하였다. Gap을 포함한 774bp (감국/산국=A/G) 위치의 SNP에서 BstUI(GC^GC)처리로 CAPS 마커로 전환 가능함이 확인되었고, 이에 감국과 산국의 PCR 산물에 제한효소를 처리한 결과, 제한효소 인식 사이트가 존재하는 산국에서 두 개의 DNA 단편이 확인되었다. 위 결과는 다양한 형태로 가공 유통되는 감국과 산국의 판별을 위한 마커로 활용될 수 있으며, 본 연구에 활용된 기술은 추후 건강기능식품 개발을 위한 원료표준화 확립 연구에 유용할 것으로 판단된다.

  • PDF

Development of Cleaved Amplified Polymorphic Sequence Markers for the Identification of Lentinula edodes Cultivars Sanmaru 1ho and Chunjang 3ho (표고버섯 품종 산마루1호, 천장3호를 구분할 수 있는 CAPS Marker 개발)

  • Moon, Suyun;Lee, Hwa-Yong;Kim, Myungkil;Ka, Kang-Hyeon;Ko, Han Kyu;Chung, Jong-Wook;Koo, Chang-Duck;Ryu, Hojin
    • The Korean Journal of Mycology
    • /
    • v.45 no.2
    • /
    • pp.114-120
    • /
    • 2017
  • Lentinula edodes is an edible mushroom that is mainly cultivated in Asian countries. Recently, new cultivars of this mushroom have been developed in Korea; variety protection is very important, so the development of efficient molecular markers that can distinguish each variety is required. In this study, we developed cleaved amplified polymorphic sequence (CAPS) markers for the identification of L. edodes cultivars (Sanmaru 1ho and Chunjang 3ho). These markers were developed from whole genomic sequencing data from L. edodes monokaryon strain B17 and resequencing data from 10 dikaryon strains. A single nucleotide polymorphism changed in scaffold 9 POS 1630048 in Sanmaru 1ho($G{\rightarrow}T$), and in scaffold 13 POS 920681 in Chunjang 3ho ($G{\rightarrow}A$). The restriction enzymes TspR I and Xho I distinguished Sanmaru 1ho and Chunjang 3ho, respectively, from other strains. Thus, we developed 2 CAPS markers for the identification of the L. edodes cultivars Sanmaru 1ho and Chunjang 3ho.

Development of Cleaved Amplified Polymorphic Sequence Markers of Lentinula edodes Cultivars Sanbaekhyang and Sulbaekhyang (표고 품종 산백향과 설백향 구분을 위한 CAPS 마커 개발)

  • Moon, Suyun;Hong, Chang Pyo;Ryu, Hojin;Lee, Hwa-Yong
    • The Korean Journal of Mycology
    • /
    • v.49 no.1
    • /
    • pp.33-44
    • /
    • 2021
  • Lentinula edodes (Berk.) Pegler, the most produced mushroom in the world, is an edible mushroom with very high nutritional and pharmacological value. Currently, interest in the protection of genetic resources is increasing worldwide, and securing the distinction between new cultivars is very important. Therefore, the development of efficient molecular markers that can discriminate between L. edodes cultivars is required. In this study, we developed cleaved amplified polymorphic sequence (CAPS) markers for the identification of L. edodes cultivars (Sanbaekhyang and Sulbaekhyang). These markers were developed from whole genome sequencing data from L. edodes monokaryon strain B17 and resequencing data from 40 cultivars. A nucleotide deletion existed in scaffold 19 POS 214449 in Sanbaekhyang (GT→G), and a single nucleotide polymorphism changed in scaffold 7 POS 215801 in Sulbaekhyang (G→A). The restriction enzymes Hha I and HpyCH4IV distinguished Sanbaekhyang and Sulbaekhyang, respectively, from other cultivars. Thus, we developed two CAPS markers for the identification of the L. edodes cultivars Sanbaekhyang and Sulbaekhyang.