DOI QR코드

DOI QR Code

Development of Functional Markers for Detection of Inactive DFR-A Alleles Responsible for Failure of Anthocyanin Production in Onions (Allium cepa L.)

  • Park, Jaehyuk (Department of Plant Biotechnology, Biotechnology Research Institute, Chonnam National University) ;
  • Cho, Dong Youn (ONBREETECH Corporation) ;
  • Moon, Jin Seong (Onion Research Institute, Gyeongsangnam-do Agricultural Research & Extension Services) ;
  • Yoon, Moo-Kyoung (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kim, Sunggil (Department of Plant Biotechnology, Biotechnology Research Institute, Chonnam National University)
  • Received : 2012.07.10
  • Accepted : 2012.10.10
  • Published : 2013.02.28

Abstract

Inactivation of the gene coding for dihydroflavonol 4-reductase (DFR) is responsible for the color difference between red and yellow onions (Allium cepa L.). Two inactive DFR-A alleles, DFR-$A^{PS}$ and DFR-$A^{DEL}$, were identified in our previous study. A functional marker was developed on the basis of the premature stop codon that inactivated the DFR-$A^{PS}$ allele. A derived cleaved amplified polymorphic sequences (dCAPS) primer was designed to detect the single nucleotide polymorphism, an A/T transition, which produced the premature stop codon. Digested PCR products clearly distinguished the homozygous and heterozygous red $F_2$ individuals. Meanwhile, to develop a molecular marker for detection of the DFR-$A^{DEL}$ allele in which entire DFR-A gene was deleted, genome walking was performed and approximately 3 kb 5' and 3' flanking sequences of the DFR-$A^R$ coding region were obtained. PCR amplification using multiple primers binding to the extended flanking regions showed that more of the extended region of the DFR-A gene was deleted in the DFR-$A^{DEL}$ allele. A dominant simple PCR marker was developed to identify the DFR-$A^{DEL}$ allele using the dissimilar 3' flanking sequences of the DFR-A gene and homologous DFR-B pseudogene. Distribution of the DFR-$A^{PS}$ and DFR-$A^{DEL}$ alleles in yellow onion cultivars bred in Korea and Japan was surveyed using molecular makers developed in this study. Results showed predominant existence of the DFR-$A^{PS}$ allele in yellow onion cultivars.

Keywords

References

  1. Andersen, J.R. and T. Lubberstedt. 2003. Functional markers in plants. Trends Plant Sci. 11:554-560.
  2. Appleby, N., D. Edwards, and J. Batley. 2009. New technologies for ultra-high throughput genotyping in plants. Methods Mol. Biol. 513:19-39. https://doi.org/10.1007/978-1-59745-427-8_2
  3. Chen, X. and P.F. Sullivan. 2003. Single nucleotide polymorphism genotyping: Biochemistry, protocol, cost and throughput. Pharmacogenomics J. 3:77-96. https://doi.org/10.1038/sj.tpj.6500167
  4. Clarke, A.E. and H.A. Jones, and T.M. Little. 1944. Inheritance of bulb color in the onion. Genetics 29:569-575.
  5. Clere, N., S. Faure, M.C. Martinez, and R. Andriantsitohaina. 2011. Anticancer properties of flavonoids: Roles in various stages of carcinogenesis. Cardiovasc. Hematol. Agents Med. Chem. 9:62-77. https://doi.org/10.2174/187152511796196498
  6. Cook, N.C. and S. Samman. 1996. Flavonoids-chemistry, metabolism, cardioprotective effects, and dietary sources. Nutr. Biochem. 7:66-76. https://doi.org/10.1016/0955-2863(95)00168-9
  7. Cushnie, T.P. and A.J. Lamb. 2011. Recent advances in understanding the antibacterial properties of flavonoids. Int. J. Antimicrob. Agents 38:99-107. https://doi.org/10.1016/j.ijantimicag.2011.02.014
  8. Dao, T.T.H., H.H.M. Linthorst, and R. Verpoorte. 2011. Chalcone synthase and tis functions in plant resistance. Phytochem. Rev. 10:397-412. https://doi.org/10.1007/s11101-011-9211-7
  9. Doyle, J.J. and J.L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19:11-15.
  10. Edwards, D. and J. Batley. 2010. Plant genome sequencing: applications for crop improvement. Plant Biotechnol. J. 8:2-9. https://doi.org/10.1111/j.1467-7652.2009.00459.x
  11. El-Shafie, M.W. and G.N. Davis. 1967. Inheritance of bulb color in the onion (Allium cepa L.). Hilgardia 38:607-622. https://doi.org/10.3733/hilg.v38n17p607
  12. Ferrer, J.L., M.B. Austin, C. Stewart, Jr., and J.P. Noel. 2008. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol. Biochem. 46:356-370. https://doi.org/10.1016/j.plaphy.2007.12.009
  13. Fini, A., C. Brunetti, M. Di Ferdinando, F. Ferrini, and M. Tattini. 2011. Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signal Behav. 6:709-711. https://doi.org/10.4161/psb.6.5.15069
  14. Fossen, T., O.M. Andersen, D.O. Ovstedal, A.T. Pedersen, and A. Raknes. 1996. Characteristic anthocyanin pattern from onions and other Allium spp. J. Food Sci. 61:703-706. https://doi.org/10.1111/j.1365-2621.1996.tb12185.x
  15. Goodrich, J., R. Carpenter, and E.S. Coen. 1992. A common gene regulates pigmentation pattern in diverse plant species. Cell 68:955-964. https://doi.org/10.1016/0092-8674(92)90038-E
  16. Holton, T.A. and E.C. Cornish 1995. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1070-1083.
  17. Kim, S., D. Baek, D.Y. Cho, and M. Yoon. 2009. Identification of two novel inactive DFR-A alleles responsible for failure to produce anthocyanin and development of a simple PCR-based molecular marker for bulb color selection in onion (Allium cepa L.) Theor. Appl. Genet. 118:1391-1399. https://doi.org/10.1007/s00122-009-0989-2
  18. Kim, S., M. Binzel, K. Yoo, S. Park, and L.M. Pike. 2004a. Inactivation of DFR (dihydroflavonol 4-reductase) gene transcription results in blockage of anthocyanin production in yellow onions (Allium cepa). Mol. Breed. 14:253-263. https://doi.org/10.1023/B:MOLB.0000047770.92977.04
  19. Kim, S., R. Jones, K. Yoo, and L.M. Pike. 2004b. Gold color in onions (Allium cepa): A natural mutation of the chalcone isomerase gene resulting in a pre-mature termination codon. Mol. Gen. Genomics 272:411-419. https://doi.org/10.1007/s00438-004-1076-7
  20. Kim, S., R. Jones, K. Yoo, and L.M. Pike. 2005a.. The L locus, one of complementary genes required for anthocyanin production in onions (Allium cepa), encodes anthocyanidin synthase. Theor. Appl. Genet. 111:120-127. https://doi.org/10.1007/s00122-005-2000-1
  21. Kim, S., K. Yoo, and L.M. Pike. 2005b. The basic color factor, the C locus, encodes a regulatory gene controlling transcription of chalcone synthase genes in onions (Allium cepa). Euphytica 142:273-282. https://doi.org/10.1007/s10681-005-2239-2
  22. Kim, S., K. Yoo, and L.M. Pike. 2005c. Development of a PCR-based marker utilizing a deletion mutation in the DFR (dihydroflavonol 4-reductase) gene responsible for the lack of anthocyanin production in yellow onions (Allium cepa). Theor. Appl. Genet. 110:588-595. https://doi.org/10.1007/s00122-004-1882-7
  23. Lotito, S.B. and B. Frei. 2006. Consumption of flavonoids-rich foods and increased plasma antioxidant capacity in humans: cause, consequence, or epiphenomenon? Free Radic. Biol. Med. 41:1727-1746. https://doi.org/10.1016/j.freeradbiomed.2006.04.033
  24. Nam, E., D.Y. Cho, E. Lee, C. Kim, H. Han, M. Yoon, and S. Kim. 2011. Bulb storability of red and yellow onion (Allium cepa L.) cultivars grown in Korea. Kor. J. Breed. Sci. 43: 132-138.
  25. Neeraja, C.N., R. Maghirang-Rodriguez, A. Pamplona, S. Heuer, B.C.Y. Collard, E.M. Septiningsih, G. Vergara, D. Sanchez, K. Xu, A.M. Ismail, and D.J. Mackill. 2007. A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theor. Appl. Genet. 115:767-776. https://doi.org/10.1007/s00122-007-0607-0
  26. Neff, M.M., J.D. Neff, J. Chory, and A.E. Pepper. 1998. dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: Experimental applications in Arabidopsis thaliana genetics. Plant J. 14:387-392. https://doi.org/10.1046/j.1365-313X.1998.00124.x
  27. Neff, M.M., E. Turk, and M. Kalishman. 2002. Web-based primer design for single nucleotide polymorphism analysis. Trends Genet. 18:613-615. https://doi.org/10.1016/S0168-9525(02)02820-2
  28. Nishiumi, S., S. Miyamoto, K. Kawabata, K. Ohnishi, R. Mukai, A. Murakami, H. Ashida, and J. Terao. 2011. Dietary flavonoids as cancer-preventive and therapeutic biofactors. Front. Biosci. 3:1332-1362.
  29. Quattrocchio, F., J.F. Wing, H.T.C. Leppen, J.N. Mol, and R.E. Koes. 1993. Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes. Plant Cell 5:1497-1512. https://doi.org/10.1105/tpc.5.11.1497
  30. Reiman, G.H. 1931. Genetic factors for pigmentation in the onion and their relation to disease resistance. J. Agr. Res. 42:251-278.
  31. Rhodes, M.J.C. and K.R. Price. 1996. Analytical problems in the study of flavonoid compounds in onions. Food Chem. 57:113-117. https://doi.org/10.1016/0308-8146(96)00147-1
  32. Rozen, S. and H.J. Skaletsky. 2000. Primer3 on the WWW for general users and for biologist programmers, p. 365-386. In: S. Krawetz and S. Misener (eds.). Bioinormatics methods and protocols: Methods in molecular biology. Humana Press, Totowa, NJ.
  33. Russo, M., C. Spagnuolo, I. Tedesco, S. Bilotto, and G.L. Russo. 2012. The flavonoid quercetin in disease prevention and therapy: Facts and fancies. Biochem. Pharmacol. 83:6-15. https://doi.org/10.1016/j.bcp.2011.08.010
  34. Septiningsih, E.M., A.M. Pamplona, D.L. Sanchez, C.N. Neeraja, G.V. Vergara, S. Heuer, A.M. Ismail, and D.J. Mackill. 2009. Development of submergence-tolerant rice cultivars: The Sub1 locus and beyond. Ann. Bot. 103:151-160.
  35. Shirley, B.W. 1996. Flavonoid biosynthesis: 'New' functions for an 'old' pathway. Trends Plant Sci. 1:377-382.
  36. Slimestad, R., T. Fossen, and I.M. Vagen. 2007. Onions: A source of unique dietary flavonoids. J. Agric. Food Chem. 55:10067-10080. https://doi.org/10.1021/jf0712503
  37. Spelt, C., F. Quattrocchio, J.N. Mol, and R.E. Koes. 2000. Anthocyanin1 of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes. Plant Cell 12:1619-1631. https://doi.org/10.1105/tpc.12.9.1619
  38. Varshney, R.K., S.N. Nayak, G.D. May, and S.A. Jackson. 2009. Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol. 27:522-530. https://doi.org/10.1016/j.tibtech.2009.05.006
  39. Veitch, N.C. and R.J. Grayer 2011. Flavonoids and their glycosides, including anthocyanins. Nat. Prod. Rep. 28:1626-1695. https://doi.org/10.1039/c1np00044f
  40. Vogt, T. 2010. Phenylpropanoid biosynthesis. Mol. Plant 3:2-20. https://doi.org/10.1093/mp/ssp106
  41. Yamazaki, M., Y. Makita, K. Springob, and K. Saito 2003. Regulatory mechanisms for anthocyanin biosynthesis in chemotypes of Perilla frutescens var. crispa. Biochem. Eng. J. 14:191-197. https://doi.org/10.1016/S1369-703X(02)00222-X

Cited by

  1. At least nine independent natural mutations of the DFR-A gene are responsible for appearance of yellow onions (Allium cepa L.) from red progenitors vol.33, pp.1, 2014, https://doi.org/10.1007/s11032-013-9942-9
  2. Enhancing onion breeding using molecular tools vol.135, pp.1, 2016, https://doi.org/10.1111/pbr.12330
  3. Identification of two novel mutant ANS alleles responsible for inactivation of anthocyanidin synthase and failure of anthocyanin production in onion (Allium cepa L.) vol.212, pp.3, 2016, https://doi.org/10.1007/s10681-016-1774-3
  4. Genetics of bulb colour variation and flavonoids in onion vol.94, pp.4, 2013, https://doi.org/10.1080/14620316.2018.1543558
  5. A Review of Genetic Understanding and Amelioration of Edible Allium Species vol.37, pp.4, 2013, https://doi.org/10.1080/87559129.2019.1709202