• Title/Summary/Keyword: CAD/CAM coping

Search Result 46, Processing Time 0.022 seconds

Influence of porcelain veneering on the marginal fit of Digident and Lava CAD/CAM zirconia ceramic crowns

  • Pak, Hyun-Soon;Han, Jung-Suk;Lee, Jai-Bong;Kim, Sung-Hun;Yang, Jae-Ho
    • The Journal of Advanced Prosthodontics
    • /
    • v.2 no.2
    • /
    • pp.33-38
    • /
    • 2010
  • PURPOSE. Marginal fit is a very important factor considering the restoration's long-term success. However, adding porcelain to copings can cause distortion and lead to an inadequate fit which exposes more luting material to the oral environment and causes secondary caries. The purpose of this study was to compare the marginal fit of 2 different all-ceramic crown systems before and after porcelain veneering. This study was also intended to verify the marginal fit of crowns originated from green machining of partially sintered blocks of zirconia (Lava CAD/CAM system) and that of crowns obtained through machining of fully sintered blocks of zirconia (Digident CAD/CAM system). MATERIALS AND METHODS. 20 crowns were made per each system and the marginal fit was evaluated through a light microscope with image processing (Accura 2000) at 50 points that were randomly selected. Each crown was measured twice: the first measurement was done after obtaining a 0.5 mm coping and the second measurement was done after porcelain veneering. The means and standard deviations were calculated and statistical inferences among the 2 groups were made using independent t-test and within the same group through paired t-test. RESULTS. The means and standard deviations of the marginal fit were $61.52{\pm}2.88{\mu}m$ for the Digident CAD/CAM zirconia ceramic crowns before porcelain veneering and $83.15{\pm}3.51{\mu}m$ after porcelain veneering. Lava CAD/CAM zirconia ceramic crowns showed means and standard deviations of $62.22{\pm}1.78{\mu}m$ before porcelain veneering and $82.03{\pm}1.85{\mu}m$ after porcelain veneering. Both groups showed significant differences when analyzing the marginal gaps before and after porcelain veneering within each group. However, no significant differences were found when comparing the marginal gaps of each group before porcelain veneering and after porcelain veneering as well. CONCLUSION. The 2 all-ceramic crown systems showed marginal gaps that were within a reported clinically acceptable range of marginal discrepancy.

Influence of finish line design on the marginal fit of nonprecious metal alloy coping fabricated by 3D printing, milling and casting using CAD-CAM (CAD-CAM을 이용한 3D printing, milling, casting 방법의 비귀금속 코핑의 지대치 변연 적합도 연구)

  • Seo-Rahng Kim;Myung-Joo Kim;Ji-Man Park;Seong-Kyun Kim;Seong-Joo Heo;Jai-Young Koak
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.1
    • /
    • pp.1-17
    • /
    • 2023
  • Purpose. The purpose of this study was to examine the correlation between the finish line designs and the marginal adaptation of nonprecious metal alloy coping produced by different digital manufacturing methods. Materials and methods. Nonprecious metal alloy copings were made respectively from each master model with three different methods; SLS, milling and casting by computer aided design and computer aided manufacturing (CAD-CAM). Twelve copings were made by each method resulting in 72 copings in total. The measurement was conducted at 40 determined reference points along the circumferential margin with the confocal laser scanning microscope at magnification ×150. Results. Mean values of marginal gap of laser sintered copings were 11.8 ± 7.4 ㎛ for deep chamfer margin and 6.3 ± 3.5 ㎛ for rounded shoulder margin and the difference between them was statistically significant (P < .0001). Mean values of marginal gap of casted copings were 18.8 ± 20.2 ㎛ for deep chamfer margin and 33 ± 20.5 ㎛ for rounded shoulder margin and the difference between them was significant (P = .0004). Conclusion. Within the limitation of this study, the following conclusions were drawn. 1. The variation of finish line design influences the marginal adaptation of laser sintered metal coping and casted metal coping. 2. Laser sintered copings with rounded shoulder margin had better marginal fit than deep chamfer margin. 3. Casted copings with deep chamfer margin had better marginal fit than rounded shoulder margin. 4. According to the manufacturing method, SLS system showed the best marginal fit among three different methods. Casting and milling method followed that in order.

Procera System : a Review of Literature (Procera System의 역사적 고찰)

  • Shin, Soo-yeon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.4
    • /
    • pp.309-315
    • /
    • 2006
  • The availability of high-technology systems that use computer-aided design(CAD) and computer-aided machining(CAM) is on the increase. One such system is the Procera system, which fabricates an all-ceramic crown composed of a densely sintered, high-purity aluminum oxide coping combined with a compatible veneering porcelain. Strength, precision of fit, esthetics, cementation, and biocompatibility are among the many factors that concern clinicians when fabricating all-ceramic restorations with this system. This paper reviews the long history and background development of technical, laboratory and clinical applications and presents, in summary form, the data from the many studies on the Procera system.

Comparison of the Marginal and Internal Fit on the Cast and CAD-CAM Cores (주조에 의한 Core와 CAD-CAM에 의한 Core의 적합도 비교평가)

  • Han, Man-So;Kim, Ki-Baek
    • Journal of dental hygiene science
    • /
    • v.12 no.4
    • /
    • pp.368-374
    • /
    • 2012
  • Dental CAD (computer-aided design)/CAM (computer-aided manufacturing) systems facilitate the use of zirconia core for all-ceramic crown. The purpose of this study was to evaluate the marginal and internal fit of zirconia core fabricated using a dental CAD/CAM system and to compare the fit of metal cores by a conventional method. Ten identical cases of single coping study models (abutment of teeth 11) were manufactured and scanned. Ten zirconia cores were fabricated using dental CAD/CAM system. An experienced dental technician fabricated 10 samples of metal cores for the control group using the lost wax technique. Marginal and internal fit was measured by the silicone replica technique. Fit was measured with magnification of 160 using a digital Microscope. Margin, rounded chamfer, axial wall and incisal fits were measured for comparison. T-test of independent sample for statistical analysis was executed with SPSS 12.0 for Windows (SPSS Inc., Chicago, IL, USA) (${\alpha}$=0.05). The mean (SD) for marginal, rounded chamfer, axial wall and incisal were: $97.0\;(25.3){\mu}m$, $104.0\;(22.0){\mu}m$, $59.6\;(21.4){\mu}m$ and $124.8\;(33.3){\mu}m$ for the zirconia core group, and $785.2\;(18.4){\mu}m$, $83.8\;(15.1){\mu}m$, $42.7\;(9.6){\mu}m$ and $83.4\;(14.4){\mu}m$ for the metal core group. T-test showed significant differences between groups for margin (p<.001), rounded chamfer (p<.001), axial wall (p<.001) and incisal (p<.001). But zirconia core group observed that the marginal and internal fit values in the present study were within clinically acceptable range.

Comparative evaluation of marginal and internal fit of metal copings fabricated by various CAD/CAM methods (다양한 CAD/CAM 방식으로 제작한 금속하부구조물 간의 변연 및 내면 적합도 비교 연구)

  • Jeong, Seung-Jin;Cho, Hye-Won;Jung, Ji-Hye;Kim, Jeong-Mi;Kim, Yu-Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.3
    • /
    • pp.211-218
    • /
    • 2019
  • Purpose: The purpose of the present study was to compare the accuracy of four different metal copings fabricated by CAD/CAM technology and to evaluate clinical effectiveness. Materials and methods: Composite resin tooth of the maxillary central incisor was prepared for a metal ceramic crown and duplicated metal die was fabricated. Then scan the metal die for 12 times to obtain STL files using a confocal microscopy type oral scanner. Metal copings with a thickness of 0.5 mm and a cement space of $50{\mu}m$ were designed on a CAD program. The Co-Cr metal copings were fabricated by the following four methods: Wax pattern milling & Casting (WM), Resin pattern 3D Printing & casting (RP), Milling & Sintering (MS), Selective laser melting (SLM). Silicone replica technique was used to measure marginal and internal discrepancies. The data was statistically analyzed with One-way analysis of variance and appropriate post hoc test (Scheffe test) (${\alpha}=.05$). Results: Mean marginal discrepancy was significantly smaller in the Group WM ($27.66{\pm}9.85{\mu}m$) and Group MS ($28.88{\pm}10.13{\mu}m$) than in the Group RP ($38.09{\pm}11.14{\mu}m$). Mean cervical discrepancy was significantly smaller in the Group MS than in the Group RP. Mean axial discrepancy was significantly smaller in the Group WM and Group MS then in the Group RP and Group SLM. Mean incisal discrepancies was significantly smaller in the Group RP than in all other groups. Conclusion: The marginal and axial discrepancies of the Co-Cr coping fabricated by the Wax pattern milling and Milling/Sintering method were better than those of the other groups. The marginal, cervical and axial fit of Co-Cr copings in all groups are within a clinically acceptable range.

Comparison of the Marginal and Internal Gap of Metal Coping according to Processing Method of Dental CAD/CAM System (치과 캐드캠 시스템의 가공 방식에 따른 금속 코핑의 적합도 비교)

  • Kim, Dong-Yeon;Jeon, Jin-Hun;Park, Jin-Young;Kim, Ji-Hwan;Kim, Hae-Young;Kim, Woong-Chul
    • Journal of dental hygiene science
    • /
    • v.15 no.1
    • /
    • pp.12-17
    • /
    • 2015
  • The purpose of this study was to evaluate the marginal and internal gap of metal coping fabricated using additive manufacturing (AM) group and subtractive manufacturing (SM) group by dental computer-aided design (CAD)/computer-aided manufacturing (CAM) systems. Twenty same cases of stone models of abutment teeth 16 by the universal numbering system were manufactured and scanned. Ten metal copings of control group were fabricated using SM and ten metal coping of experimental group were fabricated using AM. Marginal and internal gap of copings were measured using the silicone replica technique and digital microscope (${\times}140$). The data were analyzed using IBM SPSS 21.0 Statistical Software for independent samples t-test (${\alpha}=0.05$). Mean${\pm}$ standard deviation (SD) of marginal and internal gap total size of SM group was $101.00{\pm}40.33{\mu}m$ of AM group was $83.61{\pm}40.37{\mu}m$. Mean${\pm}$SD of marginal and internal gap total size of SM group was significantly greater than that of AM group (p<0.05). This study showed that AM metal copings had a better marginal and internal gap than SM metal copings.

Acquisition and Processing of 3D Data (3차원 데이터의 획득 및 가공)

  • Kim A.H.;Kim Y.S.;Bae C.;Kang W.C.;Kim Y.D.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.286-290
    • /
    • 2003
  • Accurate acquisition of surface geometries such as machined surfaces, biological surfaces, and deformed parts have been very important technique in scientific study and engineering, expecially for system design, manufacturing and inspection. Two camera method keeps accuracy more than double than mechanical method. In this paper, we describe the processes surface data of teeth for automatic processing, transformation that changes to coping data of possible numeric data form and processed inlay teeth. As the result of the Inlay manufacture, which can process with high resolution, therefore we construct the automatic processing system that depends on manual

  • PDF

3D Processing System of Tooth shape (치형 3차원 가공시스템)

  • Kim, Young-Su;Kim, Nam-Oh;Min, Wan-Ki;Shin, Suck-Doo;Kang, Won-Can;Kim, Young-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2003.07e
    • /
    • pp.120-123
    • /
    • 2003
  • Accurate acquisition of surface geometries such as machined surfaces, biological surfaces, and deformed parts have been very important technique in scientific study and engineering, expecially for system design, manufacturing and inspection. Two camera method keeps accuracy more than double than mechanical method. In this paper, we describe the processes surface data of teeth for automatic processing, transformation that changes to coping data of possible numeric data form, and processed inlay teeth. As the result of the Inlay manufacture, which can process with high resolution, therefore we construct the automatic processing system that depends on manual.

  • PDF

Effect of anatomic, semi-anatomic and non-anatomic occlusal surface tooth preparations on the adaptation of zirconia copings

  • Habib, Syed Rashid;Asiri, Waleed;Hefne, Mohammed Jameel
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.444-450
    • /
    • 2014
  • PURPOSE. To compare the accuracy of marginal and internal adaptation of zirconia (Zr) copings fabricated on anatomic (A), semi-anatomic (SA) and non-anatomic (NA) occlusal surface preparations. MATERIALS AND METHODS. 45 extracted bicuspid teeth were prepared for receiving zirconia crowns, with different occlusal preparation designs A=15, SA=15 & NA=15. The Zr copings were fabricated by using CAD4DENT, CAD/CAM. The copings were adjusted, cemented and were cross sectioned centrally from buccal cusp tip to lingual cusp tip into mesial and distal halves. The copings were examined under electron microscope at ${\times}200$ magnification and the measurements were recorded at 9 predetermined areas in micrometers. RESULTS. Overall mean gap values for the three groups was found to be $155.93{\pm}33.98{\mu}m$ with Anatomical Occlusal preparation design having the least gap value of $139.23{\pm}30.85{\mu}m$ showing the best adaptation among the groups. Post Hoc Tukey's test showed a statistically significant difference (P=.007) between the means of gap for A & NA preparation designs. Measurements recorded at 9 predetermined points showed variations for the three groups. CONCLUSION. Anatomical occlusal preparation designs resulted in better marginal and internal adaptation of Zr copings. There is a considerable variation between the measured marginal and internal gap values for the Zr copings fabricated by the (CAD4DENT-CAD/CAM). This variation may be associated with the lack of standardization of the preparation of teeth, computerized designing of the coping for each tooth, cement used, uniform pressure application during the cementation of the copings, sectioning of the copings and the microscopic measurements.

Evaluation of Marginal and Internal Gap of Cobalt-Chromium Sintering Metal Coping Fabricated by Dental CAD/CAM System (치과 CAD/CAM 시스템으로 제작한 코발트-크롬 소결 금속 코핑의 변연 및 내면 적합도 평가)

  • Kim, Dong-Yeon;Sin, Chun-Ho;Jung, Il-Do;Kim, Ji-Hwan;Kim, Woong-Chul
    • Journal of dental hygiene science
    • /
    • v.15 no.5
    • /
    • pp.536-541
    • /
    • 2015
  • The purpose of this study was to evaluate the marginal and internal gap of Cobalt (Co)-Chromium (Cr) sintering metal coping fabricated by dental computer-aided design/computer-aided manufacturing systems. Abutment tooth 46 of universal numbering system was selected for the study. Twenty Co-Cr metal copings of two groups were manufactured and scanned. Co-Cr cast metal copings (CCM) group of ten were fabricated using investment, burnout and casing after subtractive manufacturing of wax block. Also, Co-Cr sintering metal copings (CSM) group of ten were fabricated using sintering processing after subtractive manufacturing of Co-Cr soft metal bock. Marginal and internal gap of Co-Cr metal copings of twenty were measured by digital microscope (${\times}160$) with silicone replica technique. The data was analyzed from IBM SPSS Statistics ver. 22.0 Statistical software for Mann-Whitney U test (${\alpha}=0.05$). $Mean{\pm}standard$ deviation of marginal gap of CCM group was $90.12{\pm}61.73{\mu}m$ of CSM group was $60.17{\pm}24.83{\mu}m$. However, two groups was statistically not different (p>0.05). This study showed that CSM group was clinically acceptable adaptation.