DOI QR코드

DOI QR Code

Comparative evaluation of marginal and internal fit of metal copings fabricated by various CAD/CAM methods

다양한 CAD/CAM 방식으로 제작한 금속하부구조물 간의 변연 및 내면 적합도 비교 연구

  • Jeong, Seung-Jin (Department of Prosthodontics, School of Dentistry, Wonkwang University) ;
  • Cho, Hye-Won (Department of Prosthodontics, School of Dentistry, Wonkwang University) ;
  • Jung, Ji-Hye (Department of Prosthodontics, School of Dentistry, Wonkwang University) ;
  • Kim, Jeong-Mi (Dental Laboratory, Wonkwang University Dental Hospital) ;
  • Kim, Yu-Lee (Department of Prosthodontics, School of Dentistry, Wonkwang University)
  • 정승진 (원광대학교 치과대학 치과보철학교실) ;
  • 조혜원 (원광대학교 치과대학 치과보철학교실) ;
  • 정지혜 (원광대학교 치과대학 치과보철학교실) ;
  • 김정미 (원광대학교 치과병원 치과기공실) ;
  • 김유리 (원광대학교 치과대학 치과보철학교실)
  • Received : 2019.03.05
  • Accepted : 2019.04.23
  • Published : 2019.07.31

Abstract

Purpose: The purpose of the present study was to compare the accuracy of four different metal copings fabricated by CAD/CAM technology and to evaluate clinical effectiveness. Materials and methods: Composite resin tooth of the maxillary central incisor was prepared for a metal ceramic crown and duplicated metal die was fabricated. Then scan the metal die for 12 times to obtain STL files using a confocal microscopy type oral scanner. Metal copings with a thickness of 0.5 mm and a cement space of $50{\mu}m$ were designed on a CAD program. The Co-Cr metal copings were fabricated by the following four methods: Wax pattern milling & Casting (WM), Resin pattern 3D Printing & casting (RP), Milling & Sintering (MS), Selective laser melting (SLM). Silicone replica technique was used to measure marginal and internal discrepancies. The data was statistically analyzed with One-way analysis of variance and appropriate post hoc test (Scheffe test) (${\alpha}=.05$). Results: Mean marginal discrepancy was significantly smaller in the Group WM ($27.66{\pm}9.85{\mu}m$) and Group MS ($28.88{\pm}10.13{\mu}m$) than in the Group RP ($38.09{\pm}11.14{\mu}m$). Mean cervical discrepancy was significantly smaller in the Group MS than in the Group RP. Mean axial discrepancy was significantly smaller in the Group WM and Group MS then in the Group RP and Group SLM. Mean incisal discrepancies was significantly smaller in the Group RP than in all other groups. Conclusion: The marginal and axial discrepancies of the Co-Cr coping fabricated by the Wax pattern milling and Milling/Sintering method were better than those of the other groups. The marginal, cervical and axial fit of Co-Cr copings in all groups are within a clinically acceptable range.

목적: 본 연구에서는 CAD/CAM 기술로 제작한 4가지 금속하부구조물의 변연 및 내면 적합도를 비교하여 정확도 및 임상적 효용성을 알아보고자 한다. 재료 및 방법: 상악 중절치 레진모형치아를 삭제한 뒤 복제하여 Ni-Cr 합금 표준 모형을 제작하였다. 이를 공초점 현미경방식의 구강 스캐너를 이용해 12개의 STL 파일을 얻었다. CAD 프로그램 상에서 $50{\mu}m$의 시멘트 공간을 부여한 두께 0.5 mm의 금속하부구조물을 디자인하였다. Co-Cr 금속하부구조물은 다음 4가지 방법으로 제작하였다: Wax pattern milling & Casting (WM), Resin pattern 3D Printing & casting (RP), Milling & Sintering (MS), Selective laser melting (SLM). 변연 및 내면 적합도를 측정하기 위해 실리콘 복제법을 이용하였다. 측정한 결과값은 SPSS 통계 프로그램을 이용하여 일원배치분산분석(one-way ANOVA)으로 통계처리하고, 사후검정으로 Scheffe test를 시행하였으며, 5% 유의수준으로 평가하였다(${\alpha}=.05$). 결과: 변연 적합도는 WM군($27.66{\pm}9.85{\mu}m$)과 MS군($28.88{\pm}10.13{\mu}m$)이 RP군($38.09{\pm}11.14{\mu}m$)에 비해 통계적으로 유의하게 작았다. 치경부 적합도는 MS군이 RP군에 비해 통계적으로 유의하게 작았다. 축면 적합도는 WM군과 MS군이 RP군과 SLM군 보다 통계적으로 유의하게 작았다. 절단면 적합도는 RP군이 통계적으로 유의하게 작았다. 결론: Wax pattern milling & Casting, Milling & Sintering법으로 제작한 Co-Cr coping의 변연과 축면에서의 적합도가 더 우수하였다. 모든 군의 Co-Cr coping의 변연, 치경부, 축면 적합도는 임상적으로 허용할만한 범위 안에 있었다.

Keywords

References

  1. Johnston JF, Dykema RW, Cunningham DM. Porcelain veneers bonded to gold castings-A progress report. J Prosthet Dent 1958;8:120-2. https://doi.org/10.1016/0022-3913(58)90021-0
  2. Kocaagaoglu H, Kilinc HI, Albayrak H, Kara M. In vitro evaluation of marginal, axial, and occlusal discrepancies in metal ceramic restorations produced with new technologies. J Prosthet Dent 2016;116:368-74. https://doi.org/10.1016/j.prosdent.2016.03.013
  3. Kane LM, Chronaios D, Sierraalta M, George FM. Marginal and internal adaptation of milled cobalt-chromium copings. J Prosthet Dent 2015;114:680-5. https://doi.org/10.1016/j.prosdent.2015.04.020
  4. Kim EH, Lee DH, Kwon SM, Kwon TY. A microcomputed tomography evaluation of the marginal fit of cobalt-chromium alloy copings fabricated by new manufacturing techniques and alloy systems. J Prosthet Dent 2017;117:393-9. https://doi.org/10.1016/j.prosdent.2016.08.002
  5. Bidra AS, Taylor TD, Agar JR. Computer-aided technology for fabricating complete dentures: systematic review of historical background, current status, and future perspectives. J Prosthet Dent 2013;109:361-6. https://doi.org/10.1016/S0022-3913(13)60318-2
  6. Poggio C, Pigozzo M, Ceci M, Scribante A, Beltrami R, Chiesa M. Influence of different luting protocols on shear bond strength of computer aided design/computer aided manufacturing resin nanoceramic material to dentin. Dent Res J (Isfahan) 2016;13:91-7. https://doi.org/10.4103/1735-3327.178194
  7. Christensen GJ. The state of fixed prosthodontic impressions: room for improvement. J Am Dent Assoc 2005;136:343-6. https://doi.org/10.14219/jada.archive.2005.0175
  8. Reich S, Wichmann M, Nkenke E, Proeschel P. Clinical fit of allceramic three-unit fixed partial dentures, generated with three different CAD/CAM systems. Eur J Oral Sci 2005;113: 174-9. https://doi.org/10.1111/j.1600-0722.2004.00197.x
  9. Chan C, Weber H. Plaque retention on teeth restored with full-ceramic crowns: a comparative study. J Prosthet Dent 1986;56:666-71. https://doi.org/10.1016/0022-3913(86)90140-X
  10. Baig MR, Tan KB, Nicholls JI. Evaluation of the marginal fit of a zirconia ceramic computer-aided machined (CAM) crown system. J Prosthet Dent 2010;104:216-27. https://doi.org/10.1016/S0022-3913(10)60128-X
  11. Goldman M, Laosonthorn P, White RR. Microleakage-full crowns and the dental pulp. J Endod 1992;18:473-5. https://doi.org/10.1016/S0099-2399(06)81345-2
  12. DeLong R, Pintado MR, Ko CC, Hodges JS, Douglas WH. Factors influencing optical 3D scanning of vinyl polysiloxane impression materials. J Prosthodont 2001;10:78-85. https://doi.org/10.1111/j.1532-849X.2001.00078.x
  13. Seelbach P, Brueckel C, Wostmann B. Accuracy of digital and conventional impression techniques and workflow. Clin Oral Investig 2013;17:1759-64. https://doi.org/10.1007/s00784-012-0864-4
  14. Lee H, Lee DH, Lee KB. In vitro evaluation methods on adaptation of fixed dental prosthesis. J Dent Rehabil Appl Sci 2017;33:63-70. https://doi.org/10.14368/jdras.2017.33.2.63
  15. Laurent M, Scheer P, Dejou J, Laborde G. Clinical evaluation of the marginal fit of cast crowns-validation of the silicone replica method. J Oral Rehabil 2008;35:116-22. https://doi.org/10.1111/j.1365-2842.2003.01203.x
  16. Wolfart S, Wegner SM, Al-Halabi A, Kern M. Clinical evaluation of marginal fit of a new experimental all-ceramic system before and after cementation. Int J Prosthodont 2003;16:587-92.
  17. Song TJ, Kwon TK, Yang JH, Han JS, Lee JB, Kim SH, Yeo IS. Marginal fit of anterior 3-unit fixed partial zirconia restorations using different CAD/CAM systems. J Adv Prosthodont 2013;5:219-25. https://doi.org/10.4047/jap.2013.5.3.219
  18. Cho L, Song H, Koak J, Heo S. Marginal accuracy and fracture strength of ceromer/fiber-reinforced composite crowns: effect of variations in preparation design. J Prosthet Dent 2002;88:388-95. https://doi.org/10.1067/mpr.2002.128378
  19. Kale E, Seker E, Yilmaz B, Ozcelik TB. Effect of cement space on the marginal fit of CAD-CAM-fabricated monolithic zirconia crowns. J Prosthet Dent 2016;116:890-5. https://doi.org/10.1016/j.prosdent.2016.05.006
  20. Holmes JR, Bayne SC, Holland GA, Sulik WD. Considerations in measurement of marginal fit. J Prosthet Dent 1989; 62:405-8. https://doi.org/10.1016/0022-3913(89)90170-4
  21. Christensen GJ. Marginal fit of gold inlay castings. J Prosthet Dent 1966;16:297-305. https://doi.org/10.1016/0022-3913(66)90082-5
  22. Hung SH, Hung KS, Eick JD, Chappell RP. Marginal fit of porcelain-fused-to-metal and two types of ceramic crown. J Prosthet Dent 1990;63:26-31. https://doi.org/10.1016/0022-3913(90)90260-J
  23. Kashani HG, Khera SC, Gulker IA. The effects of bevel angulation on marginal integrity. J Am Dent Assoc 1981;103:882-5. https://doi.org/10.14219/jada.archive.1981.0431
  24. McLean JW. Polycarboxylate cements. Five years' experience in general practice. Br Dent J 1972;132:9-15. https://doi.org/10.1038/sj.bdj.4802795
  25. Jorgensen KD, Esbensen AL. The relationship between the film thickness of zinc phosphate cement and the retention of veneer crowns. Acta Odontol Scand 1968;26:169-75. https://doi.org/10.3109/00016356809026130
  26. Passon C, Lambert RH, Lambert RL, Newman S. The effect of multiple layers of die-spacer on crown retention. Oper Dent 1992;17:42-9.
  27. Grey NJ, Piddock V, Wilson MA. In vitro comparison of conventional crowns and a new all-ceramic system. J Dent 1993;21:47-51. https://doi.org/10.1016/0300-5712(93)90051-Q
  28. Iwai T, Komine F, Kobayashi K, Saito A, Matsumura H. Influence of convergence angle and cement space on adaptation of zirconium dioxide ceramic copings. Acta Odontol Scand 2008;66:214-8. https://doi.org/10.1080/00016350802139833
  29. Vojdani M, Torabi K, Farjood E, Khaledi A. Comparison the marginal and internal fit of metal copings cast from wax patterns fabricated by CAD/CAM and conventional wax up techniques. J Dent (Shiraz) 2013;14:118-29.
  30. Keul C, Stawarczyk B, Erdelt KJ, Beuer F, Edelhoff D, Guth JF. Fit of 4-unit FDPs made of zirconia and CoCr-alloy after chairside and labside digitalization-a laboratory study. Dent Mater 2014;30:400-7. https://doi.org/10.1016/j.dental.2014.01.006
  31. Svanborg P, Skjerven H, Carlsson P, Eliasson A, Karlsson S, Ortorp A. Marginal and internal fit of cobalt-chromium fixed dental prostheses generated from digital and conventional impressions. Int J Dent 2014;2014:534382. https://doi.org/10.1155/2014/534382
  32. Park JM. Comparative analysis on reproducibility among 5 intraoral scanners: sectional analysis according to restoration type and preparation outline form. J Adv Prosthodont 2016;8:354-62. https://doi.org/10.4047/jap.2016.8.5.354
  33. Imburgia M, Logozzo S, Hauschild U, Veronesi G, Mangano C, Mangano FG. Accuracy of four intraoral scanners in oral implantology: a comparative in vitro study. BMC Oral Health 2017;17:92. https://doi.org/10.1186/s12903-017-0383-4
  34. Osman RB, Alharbi N, Wismeijer D. Build angle: Does it influence the accuracy of 3D-printed dental restorations using digital light-processing technology? Int J Prosthodont 2017;30:182-8. https://doi.org/10.11607/ijp.5117

Cited by

  1. 치과용 3D 프린터로 제작된 임시 수복용 레진의 정확도 평가 vol.19, pp.6, 2019, https://doi.org/10.13065/jksdh.20190094
  2. 절삭 및 적층 가공법으로 제작된 3본 고정성 국소의치의 변연 및 내면 적합도에 관한 연구 vol.58, pp.1, 2020, https://doi.org/10.4047/jkap.2020.58.1.7