DOI QR코드

DOI QR Code

Influence of finish line design on the marginal fit of nonprecious metal alloy coping fabricated by 3D printing, milling and casting using CAD-CAM

CAD-CAM을 이용한 3D printing, milling, casting 방법의 비귀금속 코핑의 지대치 변연 적합도 연구

  • Seo-Rahng Kim (Department of Prosthodontics, School of Dentistry, Seoul National University) ;
  • Myung-Joo Kim (Department of Prosthodontics, School of Dentistry, Seoul National University) ;
  • Ji-Man Park (Department of Prosthodontics, School of Dentistry, Seoul National University) ;
  • Seong-Kyun Kim (Department of Prosthodontics, School of Dentistry, Seoul National University) ;
  • Seong-Joo Heo (Department of Prosthodontics, School of Dentistry, Seoul National University) ;
  • Jai-Young Koak (Department of Prosthodontics, School of Dentistry, Seoul National University)
  • 김서랑 (서울대학교 치과대학 치과보철학교실) ;
  • 김명주 (서울대학교 치과대학 치과보철학교실) ;
  • 박지만 (서울대학교 치과대학 치과보철학교실) ;
  • 김성균 (서울대학교 치과대학 치과보철학교실) ;
  • 허성주 (서울대학교 치과대학 치과보철학교실) ;
  • 곽재영 (서울대학교 치과대학 치과보철학교실)
  • Received : 2022.12.27
  • Accepted : 2023.01.16
  • Published : 2023.01.31

Abstract

Purpose. The purpose of this study was to examine the correlation between the finish line designs and the marginal adaptation of nonprecious metal alloy coping produced by different digital manufacturing methods. Materials and methods. Nonprecious metal alloy copings were made respectively from each master model with three different methods; SLS, milling and casting by computer aided design and computer aided manufacturing (CAD-CAM). Twelve copings were made by each method resulting in 72 copings in total. The measurement was conducted at 40 determined reference points along the circumferential margin with the confocal laser scanning microscope at magnification ×150. Results. Mean values of marginal gap of laser sintered copings were 11.8 ± 7.4 ㎛ for deep chamfer margin and 6.3 ± 3.5 ㎛ for rounded shoulder margin and the difference between them was statistically significant (P < .0001). Mean values of marginal gap of casted copings were 18.8 ± 20.2 ㎛ for deep chamfer margin and 33 ± 20.5 ㎛ for rounded shoulder margin and the difference between them was significant (P = .0004). Conclusion. Within the limitation of this study, the following conclusions were drawn. 1. The variation of finish line design influences the marginal adaptation of laser sintered metal coping and casted metal coping. 2. Laser sintered copings with rounded shoulder margin had better marginal fit than deep chamfer margin. 3. Casted copings with deep chamfer margin had better marginal fit than rounded shoulder margin. 4. According to the manufacturing method, SLS system showed the best marginal fit among three different methods. Casting and milling method followed that in order.

목적: 본 연구의 목적은 레이져 신터링, 컴퓨터 밀링, 주조의 세 가지 방법으로 제작된 비귀금속 합금 코핑의 변연 형태에 따른 변연 적합도의 변화를 관찰하는 데 있다. 재료 및 방법: 서로 다른 두 개의 변연 형태를 정확히 재현하기 위해 3D Computer-aided Design을 이용하여 지대치 삭제의 원칙에 따라 지대치를 디자인한 다음, 티타늄 블럭을 컴퓨터 밀링하여 주모델을 제작하였다. 각각의 모델에 대하여 위의 3가지 제작 방식으로 비귀금속 합금 코핑을 12개씩 제작하여, 총 72개의 코핑을 제작하였다. 각 코핑은 지대치에 적합시켜서 공초점 레이저 주사 현미경으로 근심, 협측, 원심, 설측 변연의 변연 적합도를 150배율로 측정하였다. 결과: 레이져 신터링으로 제작한 코핑의 평균 변연 오차는 deep chamfer margin에서 11.8 ± 7.4 ㎛, rounded shoulder margin에서 6.3 ± 3.5 ㎛ 였고, 그 차이는 통계적으로 유의했다 (P < .0001). 컴퓨터 밀링으로 제작한 그룹에서는 deep chamfer margin에서 53.9 ± 27.8 ㎛, rounded shoulder margin에서 48.6 ± 30.0 ㎛였고, 변연 형태에 따른 유의한 차이가 없었다 (P = .279). 주조 방법으로 제작한 그룹은 deep chamfer margin에서 18.8 ± 20.2 ㎛, rounded shoulder margin 에서 30 ± 20.5 ㎛ 였고, 그 차이는 통계적으로 유의했다 (P = .0004). 결론: 이번 실험을 통하여, 다음과 같은 결론을 얻었다. 1. 변연의 형태에 따른 변연 적합도는 레이져 신터링이나 주조 방법으로 제작된 금속 코핑의 경우 변연 형태에 따라 유의한 차이가 있었다. 2. 레이져 신터링으로 제작한 금속 코핑에서 rounded shoulder margin이 deep chamfer margin보다 우수한 변연 적합도를 보였다. 3. 주조 방법으로 제작한 금속 코핑의 경우는 deep chamfer margin이 rounded shoulder margin보다 우수한 변연 적합도를 보였다. 4. 제작 방식에 따른 코핑의 변연 적합도는 레이져 신터링이 가장 양호하였고, 그 다음 주조 방법과 밀링 방법 순으로 변연 적합도 양호하였다. 이번 연구를 통해, 지대치의 변연 형태에 따른 금속 코핑의 변연 적합도의 변화를 관찰하였으며, 레이져 신터링으로 제작하거나 디지털 밀링한 왁스 패턴을 캐스팅한 경우에는 상관 관계가 있음을 확인하였다. 임상에 적용함에 있어 지대치의 변연 형태를 고려하여 제작 방식을 결정하는 것이 추천된다.

Keywords

Acknowledgement

This study was supported by grant no 04-2017-0091 from the SNUDH Research Fund.

References

  1. Anusavice KJ. Phillips' science of dental materials. 11th ed. Philadelphia; W.B. Saunders; 2003. p. 621-4.
  2. Wataha JC. Alloys for prosthodontic restorations. J Prosthet Dent 2002;87:351-63. https://doi.org/10.1067/mpr.2002.123817
  3. Viennot S, Dalard F, Lissac M, Grosgogeat B. Corrosion resistance of cobalt-chromium and palladium-silver alloys used in fixed prosthetic restorations. Eur J Oral Sci 2005;113:90-5. https://doi.org/10.1111/j.1600-0722.2005.00190.x
  4. Rosenstiel SF, Land MF, Fujimoto J. Contemporary fixed prosthodontics. 4th ed. St. Louis; Mosby; 2006. p. 409, 599, 606-8.
  5. Takaichi A, Suyalatu, Nakamoto T, Joko N, Nomura N, Tsutsumi Y, Migita S, Doi H, Kurosu S, Chiba A, Wakabayashi N, Igarashi Y, Hanawa T. Microstructures and mechanical properties of Co-29Cr-6Mo alloy fabricated by selective laser melting process for dental applications. J Mech Behav Biomed Mater 2013;21:67-76. https://doi.org/10.1016/j.jmbbm.2013.01.021
  6. Akova T, Ucar Y, Tukay A, Balkaya MC, Brantley WA. Comparison of the bond strength of laser-sintered and cast base metal dental alloys to porcelain. Dent Mater 2008;24:1400-4. https://doi.org/10.1016/j.dental.2008.03.001
  7. Ucar Y, Akova T, Akyil MS, Brantley WA. Internal fit evaluation of crowns prepared using a new dental crown fabrication technique: laser-sintered Co-Cr crowns. J Prosthet Dent 2009;102:253-9. https://doi.org/10.1016/S0022-3913(09)60165-7
  8. Wataha JC. Alloys for prosthodontic restorations. J Prosthet Dent 2002;87:351-63. https://doi.org/10.1067/mpr.2002.123817
  9. Gelbard S, Aoskar Y, Zalkind M, Stern N. Effect of impression materials and techniques on the marginal fit of metal castings. J Prosthet Dent 1994;71:1- 6. https://doi.org/10.1016/0022-3913(94)90246-1
  10. Fasbinder DJ. Clinical performance of chairside CAD/CAM restorations. J Am Dent Assoc 2006;137: 22S-31S. https://doi.org/10.14219/jada.archive.2006.0395
  11. Holst S, Persson A, Wichmann M, Karl M. Digitizing implant position locators on master casts: comparison of a noncontact scanner and a contact-probe scanner. Int J Oral Maxillofac Implants 2012;27:29- 35.
  12. Miyazaki T, Hotta Y, Kunii J, Kuriyama S, Tamaki Y. A review of dental CAD/CAM: current status and future perspectives from 20 years of experience. Dent Mater J 2009;28:44-56. https://doi.org/10.4012/dmj.28.44
  13. Chan DC, Chung AK, Haines J, Yau EH, Kuo CC. The accuracy of optical scanning: influence of convergence and die preparation. Oper Dent 2011;36:486- 91. https://doi.org/10.2341/10-067-L
  14. Beuer F, Naumann M, Gernet W, Sorensen JA. Precision of fit: zirconia three-unit fixed dental prostheses. Clin Oral Investig 2009;13:343-9. https://doi.org/10.1007/s00784-008-0224-6
  15. Quante K, Ludwig K, Kern M. Marginal and internal fit of metal-ceramic crowns fabricated with a new laser melting technology. Dent Mater 2008;24:1311- 5. https://doi.org/10.1016/j.dental.2008.02.011
  16. Xu D, Xiang N, Wei B. The marginal fit of selective laser melting-fabricated metal crowns: an in vitro study. J Prosthet Dent 2014;112:1437-40. https://doi.org/10.1016/j.prosdent.2014.05.018
  17. Li JM, Wang WQ, Ma JY. Comparison of the clinical effects of selective laser melting deposition basal crowns and cobalt chromium alloy base crowns. Shanghai Kou Qiang Yi Xue 2014;23:350-3.
  18. Suleiman SH, Vult von Steyern P. Fracture strength of porcelain fused to metal crowns made of cast, milled or laser-sintered cobalt-chromium. Acta Odontol Scand 2013;71:1280-9.
  19. Vandenbroucke B, Kruth J. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyping J 2007;13:196-203. https://doi.org/10.1108/13552540710776142
  20. Wu L, Zhu H, Gai X, Wang Y. Evaluation of the mechanical properties and porcelain bond strength of cobalt-chromium dental alloy fabricated by selective laser melting. J Prosthet Dent 2014;111:51-5. https://doi.org/10.1016/j.prosdent.2013.09.011
  21. Yang X, Xiang N, Wei B. Effect of fluoride content on ion release from cast and selective laser melting-processed Co-Cr-Mo alloys. J Prosthet Dent 2014; 112:1212-6. https://doi.org/10.1016/j.prosdent.2013.12.022
  22. Zeng L, Xiang N, Wei B. A comparison of corrosion resistance of cobalt-chromium-molybdenum metal ceramic alloy fabricated with selective laser melting and traditional processing. J Prosthet Dent 2014;112: 1217-24. https://doi.org/10.1016/j.prosdent.2014.03.018
  23. White SN, Sorensen JA, Kang SK, Caputo AA. Microleakage of new crown and fixed partial denture luting agents. J Prosthet Dent 1992;67:156-61. https://doi.org/10.1016/0022-3913(92)90447-I
  24. Holmes JR, Bayne SC, Holland GA, Sulik WD. Considerations in measurement of marginal fit. J Prosthet Dent 1989;62:405-8. https://doi.org/10.1016/0022-3913(89)90170-4
  25. Al Jabbari YS, Koutsoukis T, Barmpagadaki X, Zinelis S. Metallurgical and interfacial characterization of PFM Co-Cr dental alloys fabricated via casting, milling or selective laser melting. Dent Mater 2014; 30:e79-88. https://doi.org/10.1016/j.dental.2014.01.008
  26. Sakrana AA. In vitro evaluation of the marginal and internal discrepancies of different esthetic restorations. J Appl Oral Sci 2013;21:575-80. https://doi.org/10.1590/1679-775720130064
  27. Kokubo Y, Ohkubo C, Tsumita M, Miyashita A, Vult von Steyern P, Fukushima S. Clinical marginal and internal gaps of Procera AllCeram crowns. J Oral Rehabil 2005;32:526-30. https://doi.org/10.1111/j.1365-2842.2005.01458.x
  28. Weaver JD, Johnson GH, Bales DJ. Marginal adaptation of castable ceramic crowns. J Prosthet Dent 1991;66:747-53. https://doi.org/10.1016/0022-3913(91)90408-O
  29. Nakamura T, Nonaka M, Maruyama T. In vitro fitting accuracy of copy-milled alumina cores and all-ceramic crowns. Int J Prosthodont 2000;13:189- 93.
  30. Valderhaug J, Birkeland JM. Periodontal conditions in patients 5 years following insertion of fixed prostheses. Pocket depth and loss of attachment. J Oral Rehabil 1976;3:237-43.
  31. Goldman M, Laosonthorn P, White RR. Microleakage--full crowns and the dental pulp. J Endod 1992;18:473-5. https://doi.org/10.1016/S0099-2399(06)81345-2
  32. McLean JW, von Fraunhofer JA. The estimation of cement film thickness by an in vivo technique. Br Dent J 1971;131:107-11.
  33. Fransson B, Oilo G, Gjeitanger R. The fit of metal-ceramic crowns, a clinical study. Dent Mater 1985;1: 197-9. https://doi.org/10.1016/S0109-5641(85)80019-1
  34. Kashani HG, Khera SC, Gulker IA. The effects of bevel angulation on marginal integrity. J Am Dent Assoc 1981;103:882-5. https://doi.org/10.14219/jada.archive.1981.0431
  35. Shillingburg HT Jr, Hobo S, Fisher DW. Preparation design and margin distortion in porcelain-fused-to-metal restorations. J Prosthet Dent 1973;29:276-84. https://doi.org/10.1016/0022-3913(73)90007-3
  36. Faucher RR, Nicholls JI. Distortion related to margin design in porcelain-fused-to-metal restorations. J Prosthet Dent 1980;43:149-55. https://doi.org/10.1016/0022-3913(80)90178-X
  37. Omar R. Scanning electron microscopy of the marginal fit of ceramometal restorations with facially butted porcelain margins. J Prosthet Dent 1987;58:13-9. https://doi.org/10.1016/S0022-3913(87)80135-X
  38. Belser UC, MacEntee MI, Richter WA. Fit of three porcelain-fused-to-metal marginal designs in vivo: a scanning electron microscope study. J Prosthet Dent 1985;53:24-9. https://doi.org/10.1016/0022-3913(85)90058-7
  39. Syu JZ, Byrne G, Laub LW, Land MF. Influence of finish-line geometry on the fit of crowns. Int J Prosthodont 1993;6:25-30.
  40. Gavelis JR, Morency JD, Riley ED, Sozio RB. The effect of various finish line preparations on the marginal seal and occlusal seat of full crown preparations. J Prosthet Dent 1981;45:138-45. https://doi.org/10.1016/0022-3913(81)90330-9
  41. Shiratsuchi H, Komine F, Kakehashi Y, Matsumura H. Influence of finish line design on marginal adaptation of electroformed metal-ceramic crowns. J Prosthet Dent 2006;95:237-42. https://doi.org/10.1016/j.prosdent.2006.01.009
  42. Kim KB, Kim WC, Kim HY, Kim JH. An evaluation of marginal fit of three-unit fixed dental prostheses fabricated by direct metal laser sintering system. Dent Mater 2013;29:e91-6. https://doi.org/10.1016/j.dental.2013.04.007
  43. Kim KB, Kim JH, Kim WC, Kim HY, Kim JH. Evaluation of the marginal and internal gap of metal-ceramic crown fabricated with a selective laser sintering technology: two- and three-dimensional replica techniques. J Adv Prosthodont 2013;5:179-86. https://doi.org/10.4047/jap.2013.5.2.179
  44. Sundar MK, Chikmagalur SB, Pasha F. Marginal fit and microleakage of cast and metal laser sintered copings--an in vitro study. J Prosthodont Res 2014;58:252-8. https://doi.org/10.1016/j.jpor.2014.07.002
  45. Bhaskaran E, Azhagarasan NS, Miglani S, Ilango T, Krishna GP, Gajapathi B. Comparative evaluation of marginal and internal gap of Co-Cr copings fabricated from conventional wax pattern, 3D printed resin pattern and DMLS tech: an in vitro study. J Indian Prosthodont Soc 2013;13:189-95. https://doi.org/10.1007/s13191-013-0283-5
  46. Castillo-Oyague R, Lynch CD, Turrion AS, Lopez-Lozano JF, Torres-Lagares D, Suarez-Garcia MJ. Misfit and microleakage of implant-supported crown copings obtained by laser sintering and casting techniques, luted with glass-ionomer, resin cements and acrylic/urethane-based agents. J Dent 2013;41: 90-6. https://doi.org/10.1016/j.jdent.2012.09.014
  47. Oyague RC, Sanchez-Turrion A, Lopez-Lozano JF, Montero J, Albaladejo A, Suarez-Garcia MJ. Evaluation of fit of cement-retained implant-supported 3-unit structures fabricated with direct metal laser sintering and vacuum casting techniques. Odontology 2012;100:249-53. https://doi.org/10.1007/s10266-011-0050-1
  48. Ortorp A, Jonsson D, Mouhsen A, Vult von Steyern P. The fit of cobalt-chromium three-unit fixed dental prostheses fabricated with four different techniques: a comparative in vitro study. Dent Mater 2011;27:356-63. https://doi.org/10.1016/j.dental.2010.11.015
  49. Kim SR, Koak JY, Heo SJ, Kim SK, Kim MJ. Influence of the accuracy of abutment tooth preparation on the marginal adaptation of Co-Cr alloy copings fabricated with a selective laser sintering technology. J Korean Acad Prosthodont 2015;53:337-44. https://doi.org/10.4047/jkap.2015.53.4.337
  50. Sun J, Zhang FQ. The application of rapid prototyping in prosthodontics. J Prosthodont 2012;21:641-4. https://doi.org/10.1111/j.1532-849X.2012.00888.x
  51. Suarez MJ, Gonzalez de Villaumbrosia P, Pradies G, Lozano JF. Comparison of the marginal fit of Procera AllCeram crowns with two finish lines. Int J Prosthodont 2003;16:229-32.
  52. Molin M, Karlsson S. The fit of gold inlays and three ceramic inlay systems. A clinical and in vitro study. Acta Odontol Scand 1993;51:201-6. https://doi.org/10.3109/00016359309040568
  53. Rahme HY, Tehini GE, Adib SM, Ardo AS, Rifai KT. In vitro evaluation of the "replica technique" in the measurement of the fit of Procera crowns. J Contemp Dent Pract 2008;9:25-32.
  54. Habib SR, Asiri W, Hefne MJ. Effect of anatomic, semi-anatomic and non-anatomic occlusal surface tooth preparations on the adaptation of zirconia copings. J Adv Prosthodont 2014;6:444-50. https://doi.org/10.4047/jap.2014.6.6.444
  55. Soriani NC, Leal MB, Paulino SM, Pagnano VO, Bezzon OL. Effect of the use of die spacer on the marginal fit of copings cast in NiCr, NiCrBe and commercially pure titanium. Braz Dent J 2007;18:225-30. https://doi.org/10.1590/S0103-64402007000300009