• Title/Summary/Keyword: C. $Carath\acute{e}odory$

Search Result 7, Processing Time 0.02 seconds

A SHARP CARATHÉODORY'S INEQUALITY ON THE BOUNDARY

  • Ornek, Bulent Nafi
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.533-547
    • /
    • 2016
  • In this paper, a generalized boundary version of $Carath{\acute{e}}odory^{\prime}s$ inequality for holomorphic function satisfying $f(z)= f(0)+a_pz^p+{\cdots}$, and ${\Re}f(z){\leq}A$ for ${\mid}z{\mid}$<1 is investigated. Also, we obtain sharp lower bounds on the angular derivative $f^{\prime}(c)$ at the point c with ${\Re}f(c)=A$. The sharpness of these estimates is also proved.

SOME RESULTS OF THE CARATHÉODORY'S INEQUALITY AT THE BOUNDARY

  • Ornek, Bulent Nafi
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1205-1215
    • /
    • 2018
  • In this paper, a boundary version of the $Carath{\acute{e}}odory^{\prime}s$ inequality is investigated. We shall give an estimate below ${\mid}f^{\prime}(b){\mid}$ according to the first nonzero Taylor coefficient of about two zeros, namely z = 0 and $z_1{\neq}0$. The sharpness of these estimates is also proved.

ON SUFFICIENT CONDITIONS FOR CARATHÉODORY FUNCTIONS WITH THE FIXED SECOND COEFFICIENT

  • Kwon, Oh Sang
    • Honam Mathematical Journal
    • /
    • v.41 no.2
    • /
    • pp.227-242
    • /
    • 2019
  • In the present paper, we derive several sufficient conditions for $Carath{\acute{e}}odory$ functions in the open unit disk ${\mathbb{D}}:=\{z{\in}{\mathbb{C}}:{\mid}z{\mid}<1\}$ under the constraint that the second coefficient of the function is preassigned. And, we obtain some sufficient conditions for strongly starlike functions in ${\mathbb{D}}$.

On the History of the Birth of Finsler Geometry at Göttingen (괴팅겐에서 핀슬러 기하가 탄생한 역사)

  • Won, Dae Yeon
    • Journal for History of Mathematics
    • /
    • v.28 no.3
    • /
    • pp.133-149
    • /
    • 2015
  • Arrivals of Hilbert and Minkowski at $G\ddot{o}ttingen$ put mathematical science there in full flourish. They further extended its strong mathematical tradition of Gauss and Riemann. Though Riemann envisioned Finsler metric and gave an example of it in his inaugural lecture of 1854, Finsler geometry was officially named after Minkowski's academic grandson Finsler. His tool to generalize Riemannian geometry was the calculus of variations of which his advisor $Carath\acute{e}odory$ was a master. Another $G\ddot{o}ttingen$ graduate Busemann regraded Finsler geometry as a special case of geometry of metric spaces. He was a student of Courant who was a student of Hilbert. These figures all at $G\ddot{o}ttingen$ created and developed Finsler geometry in its early stages. In this paper, we investigate history of works on Finsler geometry contributed by these frontiers.

Some Nonlinear Alternatives in Banach Algebras with Applications II

  • Dhage, B.C.
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.2
    • /
    • pp.281-292
    • /
    • 2005
  • In this paper a nonlinear alternative of Leray-Schauder type is proved in a Banach algebra involving three operators and it is further applied to a functional nonlinear integral equation of mixed type $$x(t)=k(t,x({\mu}(t)))+[f(t,x({\theta}(t)))]\(q(t)+{\int}_0{^{\sigma}^{(t)}}v(t,s)g(s,x({\eta}\(s)))ds\)$$ for proving the existence results in Banach algebras under generalized Lipschitz and $Carath{\acute{e}}odory$ conditions.

  • PDF

SOME REMARKS OF THE CARATHÉODORY'S INEQUALITY ON THE RIGHT HALF PLANE

  • Ornek, Bulent Nafi
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.201-215
    • /
    • 2020
  • In this paper, a boundary version of Carathéodory's inequality on the right half plane for p-valent is investigated. Let Z(s) = 1+cp (s - 1)p +cp+1 (s - 1)p+1 +⋯ be an analytic function in the right half plane with ℜZ(s) ≤ A (A > 1) for ℜs ≥ 0. We derive inequalities for the modulus of Z(s) function, |Z'(0)|, by assuming the Z(s) function is also analytic at the boundary point s = 0 on the imaginary axis and finally, the sharpness of these inequalities is proved.

THE SHARP BOUND OF THE THIRD HANKEL DETERMINANT FOR SOME CLASSES OF ANALYTIC FUNCTIONS

  • Kowalczyk, Bogumila;Lecko, Adam;Lecko, Millenia;Sim, Young Jae
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1859-1868
    • /
    • 2018
  • In the present paper, we have proved the sharp inequality ${\mid}H_{3,1}(f){\mid}{\leq}4$ and ${\mid}H_{3,1}(f){\mid}{\leq}1$ for analytic functions f with $a_n:=f^{(n)}(0)/n!$, $n{\in}{\mathbb{N}},$, such that $$Re\frac{f(z)}{z}>{\alpha},\;z{\in}{\mathbb{D}}:=\{z{\in}{\mathbb{C}}:{\mid}z{\mid}<1\}$$ for ${\alpha}=0$ and ${\alpha}=1/2$, respectively, where $$H_{3,1}(f):=\left|{\array{{\alpha}_1&{\alpha}_2&{\alpha}_3\\{\alpha}_2&{\alpha}_3&{\alpha}_4\\{\alpha}_3&{\alpha}_4&{\alpha}_5}}\right|$$ is the third Hankel determinant.