SOME RESULTS OF THE CARATHÉODORY'S INEQUALITY AT THE BOUNDARY

Bülent Nafi Örnek

Abstract

In this paper, a boundary version of the Carathéodory's inequality is investigated. We shall give an estimate below $\left|f^{\prime}(b)\right|$ according to the first nonzero Taylor coefficient of about two zeros, namely $z=0$ and $z_{1} \neq 0$. The sharpness of these estimates is also proved.

1. Introduction

Let f be a holomorphic function in the disc $D=\{z:|z|<1\}, f(0)=0$ and $|f(z)|<1$ for $|z|<1$. In accordance with the classical Schwarz lemma, for any point z in the disc D, we have $|f(z)| \leq|z|$ and $\left|f^{\prime}(0)\right| \leq 1$. Equality in these inequalities (in the first one, for $z \neq 0$) occurs only if $f(z)=\lambda z,|\lambda|=1$ ([8], p. 329). It is an elementary consequence of Schwarz lemma that if f extends continuously to some boundary point b with $|b|=1$, and if $|f(b)|=1$ and $f^{\prime}(b)$ exists, then $\left|f^{\prime}(b)\right| \geq 1$, which is known as the Schwarz lemma on the boundary.

Chelst, Osserman, Burns and Krantz ([3,4,20]) studied the Schwarz lemma at the boundary of the unit disk, respectively. The similar types of results which are related with the subject of the paper can be found in ([13-15]). In addition, the concerning results in more general aspects is discussed by M. Mateljević in [16] where was announced on ResearchGate. Krantz [11] explored versions of the Schwarz lemma at the boundary point of a domain, and reviewed. X. Tang, T. Liu and J. Lu [22] established a new type of the classical boundary Schwraz lemma for holomorphic self-mappings of the unit polydisk D^{n} in \mathbb{C}^{n}. They extended the classical Schwarz lemma at the boundary to high dimensions. Also, M. Jeong [10] got some inequalities at a boundary point for a different form of holomorphic functions and showed the sharpness of these inequalities. In addition, M. Jeong found a necessary and sufficient condition for a holomorphic map to have fixed points only on the boundary of the unit disc and compared its derivatives at fixed points to get some relations among them [9]. In the last 15 years, there have been tremendous studies on

[^0]Schwarz lemma at the boundary (see [1,2,5-7,9,10,12,17,20,22] and references therein). Some of them are about the below boundary of modulus of the functions derivation at the points (contact points) which satisfies $|f(b)|=1$ condition of the boundary of the unit circle. In this paper, we studied "a boundary version of the Carathéodory's inequalities" as analog the Schwarz lemma at the boundary [20].

The Carathéodory's inequality states that, if the function $f(z)$ is holomorphic in the unit disc D and $\Re f \leq A$ in D, then the inequality

$$
\begin{equation*}
|f(z)-f(0)| \leq \frac{2(A-\Re f(0))|z|}{1-|z|} \tag{1.1}
\end{equation*}
$$

holds for all $z \in D$, and moreover

$$
\begin{equation*}
\left|f^{\prime}(0)\right| \leq 2(A-\Re f(0)) \tag{1.2}
\end{equation*}
$$

Equality is achieved in (1.1) (for some nonzero $z \in D$) or in (1.2) if and only if f is the function of the form

$$
f(z)=f(0)+\frac{2(A-\Re f(0)) z e^{i \theta}}{1+z e^{i \theta}}
$$

where θ is a real number ([19]).
In [18], a weak version of known Carathéodory's inequality was investigated at the boundary of the unit disc. This estimation is as follows:

Let f be a holomorphic function in the unit disc $D, f(0)=0$ and $\Re f \leq A$ for $|z|<1$. Further assume that, for some $b \in \partial D, f$ has an angular limit $f(b)$ at $b, \Re f(b)=A$. Then

$$
\begin{equation*}
\left|f^{\prime}(b)\right| \geq \frac{A}{2} \tag{1.3}
\end{equation*}
$$

The equality in (1.3) holds if and only if

$$
f(z)=2 A \frac{z e^{i \theta}}{1+z e^{i \theta}}
$$

where θ is a real number.
In [19], we estimated a module of angular derivative of the functions, that satisfied Carathéodory's inequality, by taking into account their first nonzero two Maclaurin coefficients.

The following lemma, known as the Julia-Wolff lemma, is needed in the sequel (see [21]).

Lemma 1.1 (Julia-Wolff lemma). Let f be a holomorphic function in D, $f(0)=0$ and $f(D) \subset D$. If, in addition, the function f has an angular limit $f(b)$ at $b \in \partial D,|f(b)|=1$, then the angular derivative $f^{\prime}(b)$ exists and $1 \leq\left|f^{\prime}(b)\right| \leq \infty$.

2. Main results

We have following results, which can be offered as the boundary refinement of the Carathéodory's inequality. We shall give an estimate below $\left|f^{\prime}(b)\right|$ according to the first nonzero Taylor coefficient of about two zeros, namely $z=0$ and $z_{1} \neq 0$. The sharpness of these estimates is also proved.

Theorem 2.1. Let f be a holomorphic function in the unit disc $D, \Re f \leq A$ for $|z|<1$ and $f\left(z_{1}\right)=f(0)$ for $0<\left|z_{1}\right|<1$. Suppose that, for some $b \in \partial D$, f has an angular limit $f(b)$ at $b, \Re f(b)=A$. Then we have the inequality
$\left|f^{\prime}(b)\right| \geq \frac{A-\Re f(0)}{2}\left(1+\frac{1-\left|z_{1}\right|^{2}}{\left|b-z_{1}\right|^{2}}+\frac{2 \beta\left|z_{1}\right|-\left|f^{\prime}(0)\right|}{2 \beta\left|z_{1}\right|+\left|f^{\prime}(0)\right|}\right.$

$$
\begin{equation*}
\left.\times\left[\left.1+\frac{4 \beta^{2}\left|z_{1}\right|^{2}+\left|f^{\prime}\left(z_{1}\right)\right|\left(1-\left|z_{1}\right|^{2}\right)\left|f^{\prime}(0)\right|-2 \beta\left|f^{\prime}\left(z_{1}\right)\right|\left(1-\left|z_{1}\right|^{2}\right)-2 \beta\left|f^{\prime}(0)\right|}{4 \beta^{2}\left|z_{1}\right|^{2}+\left|f^{\prime}\left(z_{1}\right)\right|\left(1-\left|z_{1}\right|^{2}\right)\left|f^{\prime}(0)\right|+2 \beta\left|f^{\prime}\left(z_{1}\right)\right|\left(1-\left|z_{1}\right|^{2}\right)+2 \beta\left|f^{\prime}(0)\right| \mid} \right\rvert\, \frac{\left|b-z_{1}\right|^{2}}{2}\right]\right), \tag{2.1}
\end{equation*}
$$

where $\beta=A-\Re f(0)$.
The inequality (2.1) is sharp, with equality for each possible values $\left|f^{\prime}(0)\right|=$ $2 \beta e$ and $\left|f^{\prime}\left(z_{1}\right)\right|=2 \beta d\left(0 \leq e \leq 2 \beta\left|z_{1}\right|, 0 \leq d \leq 2 \beta \frac{\left|z_{1}\right|}{1-\left|z_{1}\right|^{2}}\right)$.

Proof. Let

$$
q(z)=\frac{z-z_{1}}{1-\overline{z_{1}} z}
$$

Also, let $h: D \rightarrow D$ be a holomorphic function and a point $z_{1} \in D$ in order to satisfy

$$
\left|\frac{h(z)-h\left(z_{1}\right)}{1-\overline{h\left(z_{1}\right)} h(z)}\right| \leq\left|\frac{z-z_{1}}{1-\overline{z_{1}} z}\right|=|q(z)|
$$

and

$$
\begin{equation*}
|h(z)| \leq \frac{\left|h\left(z_{1}\right)\right|+|q(z)|}{1+\left|h\left(z_{1}\right)\right||q(z)|} \tag{2.2}
\end{equation*}
$$

by Schwarz-pick lemma [8]. If $v: D \rightarrow D$ is a holomorphic function and $0<\left|z_{1}\right|<1$, letting

$$
h(z)=\frac{v(z)-v(0)}{z(1-\overline{v(0)} v(z))}
$$

in (2.2), we obtain

$$
\left|\frac{v(z)-v(0)}{z(1-\overline{v(0)} v(z))}\right| \leq \frac{\left\lvert\, \frac{v\left(z_{1}\right)-v(0)}{z_{1}\left(1-\overline{\left.v(0) v\left(z_{1}\right)\right)}|+|q(z)|\right.}\right.}{1+\left|\frac{v\left(z_{1}\right)-v(0)}{z_{1}\left(1-\overline{v(0)} v\left(z_{1}\right)\right)}\right|}|q(z)|
$$

and

$$
\begin{equation*}
|v(z)| \leq \frac{|v(0)|+|z| \frac{|C|+|q(z)|}{1+|C||q(z)|}}{1+|v(0)||z| \frac{|C|+|q(z)|}{1+|C||q(z)|}} \tag{2.3}
\end{equation*}
$$

where

$$
C=\frac{v\left(z_{1}\right)-v(0)}{z_{1}\left(1-\overline{v(0)} v\left(z_{1}\right)\right)}
$$

Without loss of generality, we will assume that $b=1$. Let

$$
\varphi(z)=\frac{f(z)-f(0)}{2 \beta-(f(z)-f(0))}, \beta=A-\Re f(0)
$$

The function $\varphi(z)$ is a holomorphic function in the unit disc $D,|\varphi(z)|<1$ for $z \in D$.

If we take

$$
v(z)=\frac{\varphi(z)}{z \frac{z-z_{1}}{1-\overline{z_{1}} z}}
$$

then

$$
v\left(z_{1}\right)=\frac{\varphi^{\prime}\left(z_{1}\right)\left(1-\left|z_{1}\right|^{2}\right)}{z_{1}}, v(0)=\frac{\varphi^{\prime}(0)}{-z_{1}}
$$

and

$$
C=\frac{\frac{\varphi^{\prime}\left(z_{1}\right)\left(1-\left|z_{1}\right|^{2}\right)}{z_{1}}+\frac{\varphi^{\prime}(0)}{z_{1}}}{z_{1}\left(1+\frac{\varphi^{\prime}\left(z_{1}\right)\left(1-\left|z_{1}\right|^{2}\right)}{z_{1}} \frac{\varphi^{\prime}(0)}{z_{1}}\right)}
$$

where $|C| \leq 1$. Let $|v(0)|=\alpha$ and

$$
\mathrm{D}=\frac{\left|\frac{\varphi^{\prime}\left(z_{1}\right)\left(1-\left|z_{1}\right|^{2}\right)}{z_{1}}\right|+\left|\frac{\varphi^{\prime}(0)}{z_{1}}\right|}{\left|z_{1}\right|\left(1+\left|\frac{\varphi^{\prime}\left(z_{1}\right)\left(1-\left|z_{1}\right|^{2}\right)}{z_{1}}\right|\left|\frac{\varphi^{\prime}(0)}{z_{1}}\right|\right)} .
$$

From (2.3), we get

$$
|\varphi(z)| \leq|z||q(z)| \frac{\alpha+|z| \frac{\mathrm{D}+|q(z)|}{1+\mathrm{D}|q(z)|}}{1+\alpha|z| \frac{\mathrm{D}+|q(z)|}{1+\mathrm{D}|q(z)|}}
$$

and

$$
\begin{align*}
\frac{1-|\varphi(z)|}{1-|z|} & \geq \frac{1+\alpha|z| \frac{\mathrm{D}+|q(z)|}{1+\mathrm{D}|q(z)|}-\alpha|z||q(z)|-|q(z)||z|^{2} \frac{\mathrm{D}+|q(z)|}{1+\mathrm{D}|q(z)|}}{(1-|z|)\left(1+\alpha|z| \frac{\mathrm{D}+|q(z)|}{1+\mathrm{D}|q(z)|}\right)} \tag{2.4}\\
& =\varrho(z) .
\end{align*}
$$

Let $\kappa(z)=1+\alpha|z| \frac{\mathrm{D}+|q(z)|}{1+\mathrm{D}|q(z)|}$ and $\tau(z)=1+\mathrm{D}|q(z)|$. Then $\varrho(z)=\frac{1-|z|^{2}|q(z)|^{2}}{(1-|z|) \kappa(z) \tau(z)}+\mathrm{D}|q(z)| \frac{1-|z|^{2}}{(1-|z|) \kappa(z) \tau(z)}+|z| \mathrm{D} \alpha \frac{1-|q(z)|^{2}}{(1-|z|) \kappa(z) \tau(z)}$.
Since

$$
\begin{gathered}
\lim _{z \rightarrow 1} \kappa(z)=\lim _{z \rightarrow 1} 1+\alpha|z| \frac{\mathrm{D}+|q(z)|}{1+\mathrm{D}|q(z)|}=1+\alpha \\
\lim _{z \rightarrow 1} \tau(z)=\lim _{z \rightarrow 1} 1+\mathrm{D}|q(z)|=1+\mathrm{D}
\end{gathered}
$$

and

$$
\begin{equation*}
1-|q(z)|^{2}=1-\left|\frac{z-z_{1}}{1-\overline{z_{1}} z}\right|^{2}=\frac{\left(1-\left|z_{1}\right|^{2}\right)\left(1-|z|^{2}\right)}{\left|1-\overline{z_{1}} z\right|^{2}} \tag{2.5}
\end{equation*}
$$

passing to the angular limit in (2.4) gives

$$
\begin{aligned}
\left|\varphi^{\prime}(1)\right| & \geq \frac{2}{(1+\alpha)(1+\mathrm{D})}\left(1+\frac{1-\left|z_{1}\right|^{2}}{\left|1-z_{1}\right|^{2}}+\mathrm{D}+\alpha \mathrm{D} \frac{1-\left|z_{1}\right|^{2}}{\left|1-z_{1}\right|^{2}}\right) \\
& =1+\frac{1-\left|z_{1}\right|^{2}}{\left|1-z_{1}\right|^{2}}+\frac{1-\alpha}{1+\alpha}\left(1+\frac{1-\mathrm{D}}{1+\mathrm{D}} \frac{1-\left|z_{1}\right|^{2}}{\left|1-z_{1}\right|^{2}}\right) .
\end{aligned}
$$

Moreover, since

$$
\begin{gathered}
\frac{1-\alpha}{1+\alpha}=\frac{1-|v(0)|}{1+|v(0)|}=\frac{1-\left|\frac{\varphi^{\prime}(0)}{z_{1}}\right|}{1+\left|\frac{\varphi^{\prime}(0)}{z_{1}}\right|}=\frac{\left|z_{1}\right|-\left|\varphi^{\prime}(0)\right|}{\left|z_{1}\right|+\left|\varphi^{\prime}(0)\right|} \\
=\frac{\left|z_{1}\right|-\left|\frac{f^{\prime}(0)}{2 \beta}\right|}{\left|z_{1}\right|+\left|\frac{f^{\prime}(0)}{2 \beta}\right|}=\frac{2 \beta\left|z_{1}\right|-\left|f^{\prime}(0)\right|}{2 \beta\left|z_{1}\right|+\left|f^{\prime}(0)\right|} \\
\frac{1-\mathrm{D}}{1+\mathrm{D}}=\frac{1-\frac{\left|\frac{\varphi^{\prime}\left(z_{1}\right)\left(1-\left|z_{1}\right|^{2}\right)}{z_{1}}\right|+\left|\frac{\varphi^{\prime}(0)}{z_{1}}\right|}{\left|z_{1}\right|\left(1+\left|\frac{\varphi^{\prime}\left(z_{1}\right)\left(1-\left|z_{1}\right|^{2}\right)}{z_{1}}\right|\left|\frac{\varphi^{\prime}(0)}{z_{1}}\right|\right)}}{1+\frac{\left|\frac{\varphi^{\prime}\left(z_{1}\right)\left(1-\left|z_{1}\right|^{2}\right)}{z_{1}}\right|+\left|\frac{\varphi^{\prime}(0)}{z_{1}}\right|}{\left|z_{1}\right|\left(1+\left|\frac{\varphi^{\prime}\left(z_{1}\right)\left(1-\left|z_{1}\right|^{2}\right)}{z_{1}}\right|\left|\frac{\varphi^{\prime}(0)}{z_{1}}\right|\right)}} \\
\left.\left.1-\frac{\left|\frac{\frac{f^{\prime}\left(z_{1}\right)}{2 \beta}\left(1-\left|z_{1}\right|^{2}\right)}{z_{1}}\right|+\left|\frac{\frac{f^{\prime}(0)}{2 \beta}}{z_{1}}\right|}{\left|z_{1}\right|\left(1+\left|\frac{\frac{f^{\prime}\left(z_{1}\right)}{2 \beta}\left(1-\left|z_{1}\right|^{2}\right)}{z_{1}}\right| \frac{f^{\prime}(0)}{2 \beta}\right.} \right\rvert\,\right)
\end{gathered}
$$

and

$$
\left.\begin{aligned}
& \frac{1-\mathrm{D}}{1+\mathrm{D}}\left.\left.=\frac{\left|z_{1}\right|\left(\left.1+\left|\frac{\frac{f^{\prime}\left(z_{1}\right)}{2 \beta}\left(1-\left|z_{1}\right|^{2}\right)}{z_{1}}\right| \right\rvert\, \frac{\frac{f^{\prime}(0)}{2 \beta}}{z_{1}}\right.}{} \right\rvert\,\right)-\left|\frac{\frac{f^{\prime}\left(z_{1}\right)}{2 \beta}\left(1-\left|z_{1}\right|^{2}\right)}{z_{1}}\right|-\left|\frac{\frac{f^{\prime}(0)}{2 \beta}}{z_{1}}\right| \\
&\left|z_{1}\right|\left(1+\left|\frac{\frac{f^{\prime}\left(z_{1}\right)}{2 \beta}\left(1-\left|z_{1}\right|^{2}\right)}{z_{1}}\right|\left|\frac{\frac{f^{\prime}(0)}{2 \beta}}{z_{1}}\right|\right)+\left|\frac{\frac{f^{\prime}\left(z_{1}\right)}{2 \beta}\left(1-\left|z_{1}\right|^{2}\right)}{z_{1}}\right|+\left\lvert\, \frac{f^{\prime}(0)}{2 \beta}\right. \\
& z_{1}
\end{aligned} \right\rvert\,
$$

we obtain

$$
\begin{aligned}
\left|\varphi^{\prime}(1)\right| \geq 1 & +\frac{1-\left|z_{1}\right|^{2}}{\left|1-z_{1}\right|^{2}}+\frac{2 \beta\left|z_{1}\right|-\left|f^{\prime}(0)\right|}{2 \beta\left|z_{1}\right|+\left|f^{\prime}(0)\right|} \\
& \times\left[1+\frac{4 \beta^{2}\left|z_{1}\right|^{2}+\left|f^{\prime}\left(z_{1}\right)\right|\left(1-\left|z_{1}\right|^{2}\right)\left|f^{\prime}(0)\right|-2 \beta\left|f^{\prime}\left(z_{1}\right)\right|\left(1-\left|z_{1}\right|^{2}\right)-2 \beta\left|f^{\prime}(0)\right|}{4 \beta^{2}\left|z_{1}\right|^{2}+\left|f^{\prime}\left(z_{1}\right)\right|\left(1-\left|z_{1}\right|^{2}\right)\left|f^{\prime}(0)\right|+2 \beta\left|f^{\prime}\left(z_{1}\right)\right|\left(1-\left|z_{1}\right|^{2}\right)+2 \beta\left|f^{\prime}(0)\right|} \frac{1-\left|z_{1}\right|^{2}}{\left|1-z_{1}\right|^{2}}\right] .
\end{aligned}
$$

From definition of $\varphi(z)$, we have

$$
\varphi^{\prime}(z)=\frac{2 \beta f^{\prime}(z)}{(2 \beta-(f(z)-f(0)))^{2}}
$$

and

$$
\left|\varphi^{\prime}(1)\right|=\left|\frac{2 \beta f^{\prime}(1)}{(2 \beta-(f(1)-f(0)))^{2}}\right| \leq \frac{2\left|f^{\prime}(1)\right|}{\beta} .
$$

Thus, we obtain the inequality (2.1).
Now, we shall show that the inequality (2.1) is sharp.
Since

$$
v(z)=\frac{\varphi(z)}{z \frac{z-z_{1}}{1-z_{1} z}}
$$

is a holomorphic function in the unit disc and $|v(z)| \leq 1$ for $z \in D$, we obtain

$$
\left|\varphi^{\prime}(0)\right| \leq\left|z_{1}\right|
$$

and

$$
\left|\varphi^{\prime}\left(z_{1}\right)\right| \leq \frac{\left|z_{1}\right|}{1-\left|z_{1}\right|^{2}}
$$

We take $z_{1} \in(-1,0)$ and arbitrary two numbers e and f, such that $0 \leq e \leq$ $2 \beta\left|z_{1}\right|, 0 \leq d \leq 2 \beta \frac{\left|z_{1}\right|}{1-\left|z_{1}\right|^{2}}$.

Let

$$
\mathrm{K}=\frac{\frac{d\left(1-\left|z_{1}\right|^{2}\right)}{z_{1}}+\frac{e}{z_{1}}}{z_{1}\left(1+e d \frac{1-\left|z_{1}\right|^{2}}{z_{1}^{2}}\right)}=\frac{1}{z_{1}^{2}} \frac{d\left(1-\left|z_{1}\right|^{2}\right)+e}{1+e d \frac{1-\left|z_{1}\right|^{2}}{z_{1}^{2}}}
$$

The auxiliary function

$$
s(z)=z \frac{z-z_{1}}{1-\overline{z_{1}} z} \frac{\frac{-e}{z_{1}}+z \frac{\mathrm{~K}+\frac{z-z_{1}}{1-z_{1} z}}{1+\mathrm{K} \frac{z-z_{1}}{1-\bar{z}_{1} z}}}{1-\frac{e}{z_{1}} z \frac{\mathrm{~K}+\frac{z-z_{1}}{1-z_{1} z}}{1+\mathrm{K} \frac{z-z_{1}}{1-\overline{z_{1}} z}}}
$$

is holomorphic in D and $|s(z)|<1$ for $z \in D$. Let

$$
\begin{equation*}
\frac{f(z)-f(0)}{2 \beta-(f(z)-f(0))}=z \frac{z-z_{1}}{1-\overline{z_{1}} z} \frac{\frac{-e}{z_{1}}+z \frac{\mathrm{~K}+\frac{z-z_{1}}{1-\overline{\overline{1}_{1} z}}}{1+\mathrm{K} \frac{z-z_{1}}{1-\overline{1} z}}}{1-\frac{e}{z_{1}} z \frac{\mathrm{~K}+\frac{z-z_{1}}{1-z_{1} z}}{1+\mathrm{K} \frac{z-z_{1}}{1-z_{1} z}}} . \tag{2.6}
\end{equation*}
$$

So, we have

Therefore, we take $\left|f^{\prime}(0)\right|=2 \beta e$ and $\left|f^{\prime}\left(z_{1}\right)\right|=2 \beta d$.
From (2.6), with the simple calculations, we obtain

$$
\begin{aligned}
& \frac{2 \beta f^{\prime}(1)}{(2 \beta-(f(1)-f(0)))^{2}} \\
= & 1+\frac{1-z_{1}^{2}}{\left(1-z_{1}\right)^{2}}+\frac{\left(1+\frac{1-z_{1}^{2}}{\left(1-z_{1}\right)^{2}} \frac{1-\mathrm{K}^{2}}{(1+\mathrm{K})^{2}}\right)\left(1-\frac{e}{z_{1}}\right)+\frac{e}{z_{1}}\left(1+\frac{1-z_{1}^{2}}{\left(1-z_{1}\right)^{2}} \frac{1-\mathrm{K}^{2}}{(1+\mathrm{K})^{2}}\right)\left(1-\frac{e}{z_{1}}\right)}{\left(1-\frac{e}{z_{1}}\right)^{2}} \\
= & 1+\frac{1-z_{1}^{2}}{\left(1-z_{1}\right)^{2}}+\frac{e+z_{1}}{-e+z_{1}}\left(1+\frac{1-z_{1}^{2}}{\left(1-z_{1}\right)^{2}} \frac{z_{1}^{2}+e d\left(1-z_{1}^{2}\right)-d\left(1-z_{1}^{2}\right)-e}{z_{1}^{2}+e d\left(1-z_{1}^{2}\right)+d\left(1-z_{1}^{2}\right)+e}\right)
\end{aligned}
$$

and

$$
\left|f^{\prime}(1)\right| \geq \frac{\beta}{2}\left(1+\frac{1-z_{1}^{2}}{\left(1-z_{1}\right)^{2}}+\frac{e+z_{1}}{-e+z_{1}}\left(1+\frac{1-z_{1}^{2}}{\left(1-z_{1}\right)^{2}} \frac{z_{1}^{2}+e d\left(1-z_{1}^{2}\right)-d\left(1-z_{1}^{2}\right)-e}{z_{1}^{2}+e d\left(1-z_{1}^{2}\right)+d\left(1-z_{1}^{2}\right)+e}\right)\right) .
$$

Since $z_{1} \in(-1,0)$, the last equality show that (2.1) is sharp.
Theorem 2.2. Let f be a holomorphic function in the unit disc $D, \Re f \leq A$ for $|z|<1$ and $f\left(z_{1}\right)=f(0)$ for $0<\left|z_{1}\right|<1$. Assume that, for positive integers p and m, f have expansions $f(z)=f(0)+c_{p} z^{p}+c_{p+1} z^{p+1}+\cdots, c_{p} \neq 0$ and $f(z)=f(0)+a_{m}\left(z-z_{1}\right)^{m}+a_{m+1}\left(z-z_{1}\right)^{m+1}+\cdots, a_{m} \neq 0$, about the points $z=0$ and $z=z_{1}$, respectively. Suppose that, for some $b \in \partial D, f$ has an angular limit $f(b)$ at $b, \Re f(b)=A$. Then we have the inequality
$\left|f^{\prime}(b)\right| \geq \frac{A-\Re f(0)}{2}\left(p+m \frac{1-\left|z_{1}\right|^{2}}{\left|b-z_{1}\right|^{2}}+\frac{2 \beta\left|z_{1}\right|^{m}-\left|c_{p}\right|}{2 \beta\left|z_{1}\right|^{m}+\left|c_{p}\right|}\right.$

$$
\begin{equation*}
\left.\times\left[1+\frac{4 \beta^{2}\left|z_{1}\right|^{p+m}+\left|a_{m}\right|\left(1-\left|z_{1}\right|^{2}\right)^{m}\left|c_{p}\right|-2 \beta\left|a_{m}\right|\left(1-\left|z_{1}\right|^{2}\right)\left|z_{1}\right|^{m-1}-2 \beta\left|c_{p}\right|\left|z_{1}\right|^{p-1}}{4 \beta^{2}\left|z_{1}\right|^{p+m}+\left|a_{m}\right|\left(1-\left|z_{1}\right|^{2}\right)^{m}\left|c_{p}\right|+2 \beta\left|a_{m}\right|\left(1-\left|z_{1}\right|^{2}\right)\left|z_{1}\right|^{m-1}+2 \beta\left|c_{p}\right|\left|z_{1}\right|^{p-1}} \frac{\left|-z_{1}\right|^{2}}{\mid b-z^{2}}\right]\right), \tag{2.7}
\end{equation*}
$$

where $\beta=A-\Re f(0)$.

The inequality (2.7) is sharp, with equality for each possible value of $\left|a_{m}\right|$ and $\left|c_{p}\right|\left(\left|c_{p}\right| \leq 2 \beta\left|z_{1}\right|^{p},\left|a_{m}\right| \leq 2 \beta \frac{\left|z_{1}\right|^{p}}{\left(1-\left|z_{1}\right|^{2}\right)^{m}}\right)$.
Proof. Consider the function

$$
v(z)=\frac{\varphi(z)}{z^{p}\left(\frac{z-z_{1}}{1-\overline{z_{1} z}}\right)^{m}} .
$$

$v(z)$ is a holomorphic function in the unit disc, $|v(z)|<1$ for $|z|<1, v(0)=$ $(-1)^{m} \frac{c_{p}}{2 \beta z_{1}^{m}}$ and $v\left(z_{1}\right)=\frac{a_{m}}{2 \beta z_{1}^{p}}\left(1-\left|z_{1}\right|^{2}\right)^{m}\left(|v(0)| \leq 1,\left|v\left(z_{1}\right)\right| \leq 1\right)$.

Let $\varsigma=\frac{\left|c_{p}\right|}{2 \beta\left|z_{1}^{m}\right|}$ and

$$
C_{1}=\frac{\left|\frac{a_{m}}{z_{1}^{\rho}}\left(1-\left|z_{1}\right|^{2}\right)^{m}\right|+\left|\frac{c_{p}}{z_{1}^{m}}\right|}{\left|z_{1}\right|\left(1+\left|\frac{a_{m}}{z_{1}^{P}}\left(1-\left|z_{1}\right|^{2}\right)^{m}\right|\left|\frac{c_{p}}{z_{1}^{m}}\right|\right)} .
$$

From (2.2) and (2.3), we obtain

$$
|\varphi(z)| \leq|z|^{p}|q(z)|^{m} \frac{\varsigma+|z| \frac{C_{1}+|q(z)|}{1+C_{1}|q(z)|}}{1+\varsigma|z| \frac{C_{1}+|q(z)|}{1+C_{1}|q(z)|}}
$$

and

$$
\mathbf{I}=\frac{1-|\varphi(z)|}{1-|z|} \geq \frac{1+\varsigma|z| \frac{C_{1}+|q(z)|}{1+C_{1}|q(z)|}-\varsigma|z|^{p}|q(z)|^{m}-|q(z)|^{m}|z|^{p+1} \frac{C_{1}+|q(z)|}{1+C_{1}|q(z)|}}{(1-|z|)\left(1+\varsigma|z| \frac{C_{1}+|q(z)|}{1+C_{1}|q(z)|}\right)} .
$$

Let $R_{1}(z)=1+\varsigma|z| \frac{C_{1}+|q(z)|}{1+C_{1}|q(z)|}$ and $R_{2}(z)=1+C_{1}|q(z)|$. Therefore, we take

$$
\begin{aligned}
\mathbf{I} \geq & \frac{1}{R_{1}(z) R_{2}(z)}\left\{\frac{1-|z|^{p+1}|q(z)|^{m+1}}{1-|z|}+C_{1}|q(z)| \frac{1-|z|^{p+1}|q(z)|^{m-1}}{1-|z|}\right. \\
& \left.+\varsigma|z||q(z)| \frac{1-|z|^{p-1}|q(z)|^{m-1}}{1-|z|}+\varsigma|z| C_{1} \frac{1-|z|^{p-1}|q(z)|^{m-1}}{1-|z|}\right\} .
\end{aligned}
$$

Passing to the angular limit in the last inequality and using (2.5), we obtain

$$
\begin{aligned}
\left|\varphi^{\prime}(1)\right| \geq & \frac{2}{(1+\varsigma)\left(1+C_{1}\right)}\left\{p+1+\frac{1-\left|z_{1}\right|^{2}}{\left|1-z_{1}\right|^{2}}(m+1)+C_{1}\left[p+1+\frac{1-\left|z_{1}\right|^{2}}{\left|1-z_{1}\right|^{2}}(m+1)\right]\right. \\
& \left.+\varsigma\left[p-1+\frac{1-\left|z_{1}\right|^{2}}{\left|1-z_{1}\right|^{2}}(m-1)\right]+\varsigma C_{1}\left[p-1+\frac{1-\left|z_{1}\right|^{2}}{\left|1-z_{1}\right|^{2}}(m+1)\right]\right\} \\
= & p+m \frac{1-\left|z_{1}\right|^{2}}{\left|1-z_{1}\right|^{2}}+\frac{1-\varsigma}{1+\varsigma}\left[1+\frac{1-C_{1}}{1+C_{1}} \frac{1-\left|z_{1}\right|^{2}}{\left|1-z_{1}\right|^{2}}\right] .
\end{aligned}
$$

Since

$$
\begin{aligned}
& \frac{1-\varsigma}{1+\varsigma}= \frac{1-\frac{\left|c_{p}\right|}{2 \beta\left|z_{1}^{m}\right|}}{1+\frac{\left|c c_{p}\right|}{2 \beta\left|z_{1}^{m}\right|}}=\frac{2 \beta\left|z_{1}^{m}\right|-\left|c_{p}\right|}{2 \beta\left|z_{1}^{m}\right|+\left|c_{p}\right|}, \\
& \frac{1-C_{1}}{1+C_{1}}=\frac{1-\frac{\left|\frac{a_{m}}{z_{1}^{m}}\left(1-\left|z_{1}\right|^{2}\right)^{m}\right|+\left|\frac{c_{p}}{z_{1}^{m}}\right|}{\left|z_{1}\right|\left(1+\left|\frac{a_{m}}{z_{1}^{p}}\left(1-\left|z_{1}\right|^{2}\right)^{m}\right|\left|\frac{c_{p}}{z_{1}^{m}}\right|\right)}}{1+\frac{\left|\frac{a_{m}}{z_{1}^{m}}\left(1-\left|z_{1}\right|^{2}\right)^{m}\right|+\left|\frac{c_{p}}{z_{1}^{m}}\right|}{\left|z_{1}\right|\left(1+\left|\frac{a_{m}}{z_{1}^{p}}\left(1-\left|z_{1}\right|^{2}\right)^{m}\right|\left|\frac{c_{p}}{z_{1}^{m}}\right|\right)}}
\end{aligned}
$$

and

$$
\frac{1-C_{1}}{1+C_{1}}=\frac{4 \beta^{2}\left|z_{1}\right|^{p+m}+\left|a_{m}\right|\left(1-\left|z_{1}\right|^{2}\right)^{m}\left|c_{p}\right|-2 \beta\left|a_{m}\right|\left(1-\left|z_{1}\right|^{2}\right)\left|z_{1}\right|^{m-1}-2 \beta\left|c_{p}\right|\left|z_{1}\right|^{p-1}}{4 \beta^{2}\left|z_{1}\right|^{p+m}+\left|a_{m}\right|\left(1-\left|z_{1}\right|^{2}\right)^{m}\left|c_{p}\right|+2 \beta\left|a_{m}\right|\left(1-\left|z_{1}\right|^{2}\right)\left|z_{1}\right|^{m-1}+2 \beta\left|c_{p}\right|\left|z_{1}\right|^{p-1}},
$$

we obtain
$\left|\varphi^{\prime}(1)\right| \geq p+m \frac{1-\left|z_{1}\right|^{2}}{\left|1-z_{1}\right|^{2}}+\frac{2 \beta\left|z_{1}^{m}\right|-\left|c_{p}\right|}{2 \beta\left|z_{1}^{m}\right|+\left|c_{p}\right|}$

$$
\times\left[1+\frac{4 \beta^{2}\left|z_{1}\right|^{p+m}+\left|a_{m}\right|\left(1-\left|z_{1}\right|^{2}\right)^{m}\left|c_{p}\right|-2 \beta\left|a_{m}\right|\left(1-\left|z_{1}\right|^{2}\right)\left|z_{1}\right|^{m-1}-2 \beta\left|c_{p}\right|\left|z_{1}\right|^{p-1}}{4 \beta^{2}\left|z_{1}\right|^{p+m}+\left|a_{m}\right|\left(1-\left|z_{1}\right|^{2}\right)^{m}\left|c_{p}\right|+\left.\left.2 \beta\left|z_{m}\right|\right|^{2}\left|\left(1-\left|z_{1}\right|^{2}\right)\right| z_{1}\right|^{m-1}+\left.2 \beta\left|c_{p}\right| z_{1}\right|^{p-1}} \frac{11-\left.z_{1}\right|^{2}}{\mid 1 .} .\right.
$$

Thus, we obtain the inequality (2.7).
In order to show that the inequality is sharp, choose arbitrary real numbers z_{1}, x and y such that $0<x<2 \beta\left|z_{1}\right|^{m}, 0<y<2 \beta \frac{\left|z_{1}\right|^{p}}{\left(1-\left|z_{1}\right|^{2}\right)^{m}}$.

Let

$$
\begin{gather*}
\mathbf{D}_{1}=\frac{\frac{y}{z_{1}^{p}}\left(1-\left|z_{1}\right|^{2}\right)^{m}+(-1)^{m-1} \frac{x}{z_{1}^{m}}}{z_{1}\left(1+(-1)^{m-1} \frac{y}{z_{1}^{p}}\left(1-\left|z_{1}\right|^{2}\right)^{m} \frac{x}{z_{1}^{m}}\right)} \\
\varphi(z)=z^{p}\left(\frac{z-z_{1}}{1-\overline{z_{1}} z}\right)^{m} \frac{(-1)^{m} \frac{x}{z_{1}^{m}}+z \frac{\mathbf{D}_{1}+\frac{z-z_{1}}{1-\overline{1}^{2} z}}{1+\mathbf{D}_{1} \frac{z-z_{1}}{1-z_{1} z}}}{1+(-1)^{m} \frac{x}{z_{1}^{m}} z \frac{\mathbf{D}_{1}+\frac{z-z_{1}}{1-z_{1} z}}{1+\mathbf{D}_{1} \frac{z-z_{1}}{1-z_{1} z}}} \tag{2.8}
\end{gather*}
$$

and

$$
f(z)=f(0)+2 \beta \frac{z^{p}\left(\frac{z-z_{1}}{1-\overline{z_{1}} z}\right)^{m} \frac{(-1)^{m} \frac{x}{z_{1}^{m}}+z \frac{\mathbf{D}_{1}+\frac{z-z_{1}}{1-\overline{z_{1} z}}}{1+\mathbf{D}_{1} \frac{z-z_{1}}{1-z_{1} z}}}{1+(-1)^{m} \frac{x}{z_{1}^{m}} z \frac{\mathbf{D}_{1}+\frac{z-z_{1}}{1-z_{1} z}}{1+\mathbf{D}_{1} \frac{z-z_{1}}{1-\overline{z_{1} z}}}}}{1+z^{p}\left(\frac{z-z_{1}}{1-z_{1} z}\right)^{m} \frac{(-1)^{m} \frac{x}{z_{1}^{m}}+z \frac{\mathbf{D}_{1}+\frac{z-z_{1}}{1-\overline{z_{1} z}}}{1+\mathbf{D}_{1} \frac{z-z_{1}}{1-z_{1} z}}}{1+(-1)^{m} \frac{x}{z_{1}^{m}} z \frac{\mathbf{D}_{1}+\frac{z-z_{1}}{1-z_{1} z}}{1+\mathbf{D}_{1} \frac{z-z_{1}}{1-z_{1} z}}}} .
$$

From (2.8), with the simple calculations, we obtain $\frac{\varphi^{(p)}(0)}{p!}=x, \frac{\varphi^{(m)}(0)}{m!}=y$ and

$$
\begin{aligned}
& \frac{2 \beta f^{\prime}(1)}{(2 \beta-(f(1)-f(0)))^{2}} \\
= & p+m \frac{1-\left|z_{1}\right|^{2}}{\left(1-z_{1}\right)^{2}}+\frac{z_{1}^{m}-(-1)^{m} x}{z_{1}^{m}+(-1)^{m} x} \\
& \times\left[1+\frac{1-\left|z_{1}\right|^{2}}{\left(1-z_{1}\right)^{2}} \frac{z_{1}^{m+p}+(-1)^{m-1} y\left(1-\left|z_{1}\right|^{2}\right)^{m} x-y\left(1-\left|z_{1}\right|^{2}\right)^{m} z_{1}^{m+1}+(-1)^{m-1} y\left(1-\left|z_{1}\right|^{2}\right)^{m} x+y\left(1-\left|z_{1}\right|^{2}\right)^{m} z_{1}^{m-1}+(-1)^{m-1} x z_{1}^{p-1}}{z_{1}^{p-1}}\right] .
\end{aligned}
$$

Choosing suitable signs of the numbers x, y and z_{1}, we conclude from the last equality that the inequality (2.7) is sharp.

References

[1] T. A. Azeroğlu and B. N. Örnek, A refined Schwarz inequality on the boundary, Complex Var. Elliptic Equ. 58 (2013), no. 4, 571-577.
[2] H. P. Boas, Julius and Julia: mastering the art of the Schwarz lemma, Amer. Math. Monthly 117 (2010), no. 9, 770-785.
[3] D. M. Burns and S. G. Krantz, Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary, J. Amer. Math. Soc. 7 (1994), no. 3, 661-676.
[4] D. Chelst, A generalized Schwarz lemma at the boundary, Proc. Amer. Math. Soc. 129 (2001), no. 11, 3275-3278.
[5] V. N. Dubinin, The Schwarz inequality on the boundary for functions regular in the disc, J. Math. Sci. (N. Y.) 122 (2004), no. 6, 3623-3629; translated from Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 286 (2002), Anal. Teor. Chisel i Teor. Funkts. 18, 74-84, 228-229.
[6] , Bounded holomorphic functions covering no concentric circles, J. Math. Sci. (N.Y.) 207 (2015), no. 6, 825-831.
[7] M. Elin, F. Jacobzon, M. Levenshtein, and D. Shoikhet, The Schwarz lemma: rigidity and dynamics, in Harmonic and complex analysis and its applications, 135-230, Trends Math, Birkhäuser/Springer, Cham, 2014.
[8] G. M. Goluzin, Geometrical Theory of Functions of a Complex Variable, (Russian), Second edition. Edited by V. I. Smirnov. With a supplement by N. A. Lebedev, G. V. Kuzmina and Ju. E. Alenicyn, Izdat. "Nauka", Moscow, 1966.
[9] M. Jeong, The Schwarz lemma and boundary fixed points, J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 18 (2011), no. 3, 275-284.
[10] , The Schwarz lemma and its application at a boundary point, J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 21 (2014), no. 3, 219-227.
[11] S. G. Krantz, The Schwarz lemma at the boundary, Complex Var. Elliptic Equ. 56 (2011), no. 5, 455-468.
[12] A. Lecko and B. Uzar, A note on Julia-Carathéodory theorem for functions with fixed initial coefficients, Proc. Japan Acad. Ser. A Math. Sci. 89 (2013), no. 10, 133-137.
[13] M. Mateljević, Ahlfors-Schwarz lemma and curvature, Kragujevac J. Math. 25 (2003), 155-164.
[14] , Schwarz lemma, the Carathéodory and Kobayashi metrics and applications in complex analysis, XIX GEOMETRICAL SEMINAR, At Zlatibor (2016), 1-12.
[15] , Hyperbolic geometry and Schwarz lemma, ResearchGate 2016.
[16] M. Mateljević, Note on Rigidity of Holomorphic Mappings \& Schwarz and Jack Lemma, (in preparation), ResearchGate.
[17] B. N. Örnek, Sharpened forms of the Schwarz lemma on the boundary, Bull. Korean Math. Soc. 50 (2013), no. 6, 2053-2059.
[18] , Carathéodory's inequality on the boundary, J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 22 (2015), no. 2, 169-178.
[19] , A sharp Carathéodory's inequality on the boundary, Commun. Korean Math. Soc. 31 (2016), no. 3, 533-547.
[20] R. Osserman, A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc. 128 (2000), no. 12, 3513-3517.
[21] Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Grundlehren der Mathematischen Wissenschaften, 299, Springer-Verlag, Berlin, 1992.
[22] X. Tang, T. Liu, and J. Lu, Schwarz lemma at the boundary of the unit polydisk in \mathbb{C}^{n}, Sci. China Math. 58 (2015), no. 8, 1639-1652.

Bülent Nafi Örnek
Department of Computer Engineering
Amasya University
Merkez-Amasya 05100, Turkey
Email address: nafiornek@gmail.com, nafi.ornek@amasya.edu.tr

[^0]: Received September 6, 2017; Revised November 29, 2017; Accepted February 1, 2018.
 2010 Mathematics Subject Classification. Primary 30C80, 32A10.
 Key words and phrases. holomorphic function, Carathéodory's inequality, angular derivative, Julia-Wolff-lemma, Schwarz lemma.

