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SOME RESULTS OF THE CARATHEODORY’S INEQUALITY
AT THE BOUNDARY

BULENT NAFT ORNEK

ABSTRACT. In this paper, a boundary version of the Carathéodory’s in-
equality is investigated. We shall give an estimate below |f/(b)| according
to the first nonzero Taylor coefficient of about two zeros, namely z = 0
and z1 # 0. The sharpness of these estimates is also proved.

1. Introduction

Let f be a holomorphic function in the disc D = {z : |z| < 1}, f(0) = 0 and
|7 (2)] <1 for |z| < 1. In accordance with the classical Schwarz lemma, for any
point z in the disc D, we have |f(z)| < |z| and |f/(0)| < 1. Equality in these
inequalities (in the first one, for z # 0) occurs only if f(z) = Az, |A| =1 ([8],
p- 329). It is an elementary consequence of Schwarz lemma that if f extends
continuously to some boundary point b with |b] = 1, and if | f(b)| = 1 and f’(b)
exists, then | f/(b)| > 1, which is known as the Schwarz lemma on the boundary.

Chelst, Osserman, Burns and Krantz ([3,4,20]) studied the Schwarz lemma
at the boundary of the unit disk, respectively. The similar types of results
which are related with the subject of the paper can be found in ([13-15]).
In addition, the concerning results in more general aspects is discussed by
M. Mateljevi¢ in [16] where was announced on ResearchGate. Krantz [11]
explored versions of the Schwarz lemma at the boundary point of a domain, and
reviewed. X. Tang, T. Liu and J. Lu [22] established a new type of the classical
boundary Schwraz lemma for holomorphic self-mappings of the unit polydisk
D™ in C". They extended the classical Schwarz lemma at the boundary to
high dimensions. Also, M. Jeong [10] got some inequalities at a boundary
point for a different form of holomorphic functions and showed the sharpness
of these inequalities. In addition, M. Jeong found a necessary and sufficient
condition for a holomorphic map to have fixed points only on the boundary of
the unit disc and compared its derivatives at fixed points to get some relations
among them [9]. In the last 15 years, there have been tremendous studies on
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Schwarz lemma at the boundary (see [1,2,5-7,9,10,12,17,20,22] and references
therein). Some of them are about the below boundary of modulus of the
functions derivation at the points (contact points) which satisfies |f (b)] = 1
condition of the boundary of the unit circle. In this paper, we studied “a
boundary version of the Carathéodory’s inequalities” as analog the Schwarz
lemma at the boundary [20].

The Carathéodory’s inequality states that, if the function f(z) is holomor-
phic in the unit disc D and f < A in D, then the inequality

(A—Rf(0) ]|
1—z]

2
(L.1) |f(z) = f(0)] <
holds for all z € D, and moreover

(1.2) IF1(0)] < 2(A = Rf(0).

Equality is achieved in (1.1) (for some nonzero z € D) or in (1.2) if and only
if f is the function of the form

2 (A —Rf(0)) ze®
14 ze®

f(z)=1(0) + ;
where 6 is a real number ([19]).

In [18], a weak version of known Carathéodory’s inequality was investigated
at the boundary of the unit disc. This estimation is as follows:

Let f be a holomorphic function in the unit disc D, f(0) =0 and Rf < A4
for |z| < 1. Further assume that, for some b € D, f has an angular limit f(b)
at b, Rf(b) = A. Then

A
(1.9 YOI
The equality in (1.3) holds if and only if
it
=2A———
f) =247,

where 6 is a real number.

In [19], we estimated a module of angular derivative of the functions, that
satisfied Carathéodory’s inequality, by taking into account their first nonzero
two Maclaurin coefficients.

The following lemma, known as the Julia-Wolff lemma, is needed in the
sequel (see [21]).

Lemma 1.1 (Julia-Wolff lemma). Let f be a holomorphic function in D,
f(0) = 0 and f(D) C D. If, in addition, the function f has an angular
limit f(b) at b € OD, |f(b)| = 1, then the angular derivative f'(b) erists and
L< /' (b)] < oo
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2. Main results

We have following results, which can be offered as the boundary refinement of
the Carathéodory’s inequality. We shall give an estimate below | f/(b)| according
to the first nonzero Taylor coefficient of about two zeros, namely z = 0 and
z1 # 0. The sharpness of these estimates is also proved.

Theorem 2.1. Let f be a holomorphic function in the unit disc D, Rf < A
for|z| <1 and f(z1) = f(0) for 0 < |z1| < 1. Suppose that, for some b € D,
f has an angular limit f(b) at b, Rf(b) = A. Then we have the inequality

A~ Rf(0) 1—|z1f® | 28]z = |£/(0)]
2 (H b — 2| T 2Bl T 1F0)

L= [af?) - 281£/0)]; #D

- |zl\2> +281f1(0)| b — =

[F(0)] =

(2.1) y {1 482 21 + 17/ Go)l (1= 1) 1/0)] = 2817 )

+ ; ;
482 121 + 17/ Ga)l (1= ) 1/0)] + 2811 ()

~—~|—

where § = A — Rf(0).
The inequality (2.1) is sharp, with equality for each possible values |f'(0)| =
28¢ and |f'(21)] = 28d (0 < e <28, 0 < d < 28.12L5).

1—|21|2

Proof. Let
z— Z1

q(z) =

T 1l-—7zz
Also, let h: D — D be a holomorphic function and a point z; € D in order to
satisfy

h(z) — h(z1) r A
ST < T lg(2)]
and
|h(21)] + |q(2)]
(2.2) M < T el

by Schwarz-pick lemma [8]. If v : D — D is a holomorphic function and
0 < |z1| <1, letting
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and
C z
[0(0)] + |2] L
(2.3) v(z)] < [CTtlaG)
L+ [o(O)] |2l 310G
where

o) = 0(0)
1 (1 — U(O)’U(Zl)>
Without loss of generality, we will assume that b = 1. Let
_ f(z) - f(0)
)= 3G - ro)

The function ¢(z) is a holomorphic function in the unit disc D, |¢(z)| < 1 for
zeD.

C:

B=A—R/(0).

If we take
e(2)
v(2) = -
Zl—Zz
then
#(21) (1= |2 %) /
_ _ #'(0)
v(z1) = o » v(0) = —
and
¢ (1) (1=1=1%) s@( )
C= 21 h
o (14 £2201n0) 902(10))
where |C] < 1. Let |v(0)| = o and
¢'(z1)(1=111?) ©'(0)
Z1 Z1
D= - .
"(z 1—|z ’
EA <1+ ¢eolal) "’z(lo)’)
From (2.3), we get
ks
()] < J#lla(e)] - e
al: |1+D\q(z
and
1—lp()] 1+ ol ey — alella@)] - la@)l 1 Sofic
(24) L=z (1= J2) (14 |2l 252

= 0(2).
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Let k(z) =14 a|z| % and 7(z) =14 D|q(z)|. Then

S 1Pl O e T 7 )
)= T wer@ P M T m s TP T ) s )
Since

Zli_)rr%/s(z):li_)rril—kadm:l—ka,
;L)II}T(’Z) = ;l—%l +Dlg(z)]=1+D
and
2 z2—2 1_|Zl‘2 1_‘Z|2
@5 -l =1-[EE - ( |1_>Zl(z|2 >,

passing to the angular limit in (2.4) gives
2 1|z 1— |z
1)) > —————— [ 1+ —== + D+aD——

1= | 1- 1-D1— |5
|1_Zl| 1+Oé 1+D|1—21|

Moreover, since

Lo 1-po) U o)

Lra T+ROF 14 [0 |al+]¢/(0)]
| ro
= 5] 9 - 1p0)
o+ 5@~ 2Bl +1FOT
' Go(1-12112) | | oo
. e L
. _|ZI|<1+%1"“'2) L<10>>
1+D 2 DO-1:1?) ||| el
14 ~ -
|z1|(1+ Len0lnl) || o/ )
P20 (101212) || | £
z1 Z1
1_
TGO (). Lo
|ZI|<1+ 2 ()| 2 )
= 20 2| L0
- z1 Z1

f(z1) (1=12112)

£7(0)
28 23

Z1 Z1

|21|<1

)
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and
|21|<1+ 23 1 |z1\2 ’fz(/so) D_ %;1)(1 \z1\2) - fz(BO)‘
1-D =1 Z1 z1
_ 48P <zl>|(1 121 2) 7 (0)] 28] (21| (1~ 121 ?) ~28] 7' (0)]
482 |21 P+ (20) (1= 1217 [F ()| 42818 (z0)| (1= =1 [2) +281 £ (0)]
we obtain

/ 1|z ? | 2Bl=l=|£(0)]
o W21+ =2 + o)

X

. 2
|4 Wl G| ()| (o\ 26f' (z0)|(1=|=1*) ~28]£' (] 1 = |z1]
482|212 +£ () (1= 21 2) | 7 () [+28] £ (z1) | (1=|211?) +28] £ (0)] 11—z

From definition of ¢(z), we have
o 2BG)
T R TR T

and
28f'(1) 21f'(1)]
(28— (f(1) = f(0)))
Thus, we obtain the inequality (2.1).
Now, we shall show that the inequality (2.1) is sharp.

Since B
o(z
v(z) = o=
1-z12
is a holomorphic function in the unit disc and |v(z)| < 1 for z € D, we obtain
" (0)] < |21
and
o/l < AL
1— |Zl|

We take z; € (—1,0) and arbitrary two numbers e and f, such that 0 < e <
28|z, 0 <d <2872k
Let
« M+i 1d(1—|21|2)+6

, -2 Tl
2 (1 + ed%) 2114 ed=2l
23 21
The auxiliary function

z—z1

—e +1 Z12

Z—2z]

O P B = &
- —_— z—z
1—z121_ez K+

z—z
217Kk
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is holomorphic in D and |s(z)| < 1 for z € D. Let

=< 4+ Zﬁ
(2.6) f(z) = £(0) _ z—z A 1K =L

B-GFE-FO)  T-zmz, . weak

So, we have

Therefore, we take |f'(0)] = 28e and |f'(21)| = 244d.
From (2.6), with the simple calculations, we obtain

23(1)
(28— (f(1) = f(0)))?
-2 () (-4) s (sl ) (-0)
2 2
(1—21) 1-2)

14 1-— Z% e+ 2z 1 1,2«% szred(lfzf)fd(lfzf)fe
(1— 21)2 —e+ 2 (1—21)? zf—i—ed(l—zf)-‘rd(l—zf)-!—e

and

U%D|Z§<1F1_ﬁ Tk G+(1—ﬁ ﬁ*“““%ﬁ—dﬁ—ﬁ)—ﬂ>'

(1-2z)> —-e+=u 1—z) i +ed(l—zf)+d(1—27)+e

Since z1 € (—1,0), the last equality show that (2.1) is sharp. O

Theorem 2.2. Let f be a holomorphic function in the unit disc D, Rf < A for
|z| <1 and f(z1) = f(0) for 0 < |z1| < 1. Assume that, for positive integers
p and m, f have expansions f(z) = f(0) + cpzP + cpr12PT + -+, ¢, # 0 and
F(2) = f0)+am (2= 21) ™ +ama1 (z— 20)" T+, am #0, about the points
z = 0 and z = z1, respectively. Suppose that, for some b € 0D, f has an
angular limit f(b) at b, Rf(b) = A. Then we have the inequality

A—Rf(0) 1|21 | 28]z1]™ = ey
/b > + + m P
L (b)] = 5 P P T 281 [

462 [P 1= 121?) " leol = 28 am| (1= |222) |22 — 28 P 2

o[ R el (L 1P) el =28 (1) 28 el
+ N Pl bl

182 57" ] (1= 121F) lepl + 26 laml (1~ 121) 12" + 28 eyl [zaf? ! 10— 21

(2.7)

where f = A — Rf(0).
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The inequality (2.7) is sharp, with equality for each possible value of |ay|
and ey (Iep| <2812, Jam| < 281200
Proof. Consider the function

v(z) = &m
- (#5)

v(z) is a holomorphic function in the unit disc, |v(z)| < 1 for |z| < 1, v(0) =
(~1)" g5 and v(z) = g (1= |af) " (0O < 1, Jo()] < D).

Let ¢ = 25' Pl and
m
2 (1-1a)"| + |
Cy = ! o .
(e[ (- ) )
From (2.2) and (2.3), we obtain
C1+q(2)]
G+ | | el
()] < |27 la(2)™ T
<l 1+Cila(2)]
and
C z 1 C z
L=l | sl S — sl e el T SEE
o — - C z ’
1|z (1= J2l) (14512l S22
Let R1(2) =1+¢|z %{g&ll and Ry(z) =14 Cq |q(z)|. Therefore, we take
SR S o 7 1) e P el 1 ] i
= Ri(5)Ra(2) 1= 2] e =2
1= [2" " g (=)™ 1= [2f" g (=)™
c .
+ <zl lg(2)] - +¢2[ Oy .

Passing to the angular limit in the last inequality and using (2.5), we obtain

; +1+17‘21|2(m+1)+c 7‘Z1|2(m+1)
A+oga+rcy " "h-ap : :

' ()] =

1
p+1+
‘1721'

2
+ —1+1 2l 5 (m—=1)| +<C1 p—1+ ~laaf” 5 (m+1)
\1—21| \1—21
*p+m17|zl| 1—¢ 1-Cy1—|zn)
11—z 1+ 1+Ci1— 2|




Since

and
1-C4
1+ C;
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‘Cp‘

- _ 281et =l
1+¢ 1+ ‘|Cp7‘n| 2B|Z{n|+|cp|,
I e a S i
e 14 (1|21 )" |+|
'Zl‘<1+ (112 2)" || )

4Bz PP o am | (1-2112) " [ep | —2Blam |

—[z1]?) 2] =2Blep ||z [P
48221 [T Ham |

we obtain

'MW =p

1= (21 %) lep [+ 2Blam | (1— |21 %) [z2] "~ +2Blep 2|7~

2
1-
+m 1]

28|21 = lepl
|1—Zl|2

28|21 + ey

2|, (ptm 2\ 2 m—1 p
482 | + Jam| (1= 11) " lepl = 281am| (1= |21*) Joa™ " = 2Blegl [ 1 _
X |1+

-
18 4P + o] (1= |21) lepl + 28 lam] (1= |1 ) 1™ + 28 eyl [P 1= 21

Thus, we obtain the inequality (2.7)

In order to show that the inequality is sharp, choose arbitrary real numbers
21, x and y such that 0 < z < 2821|™,

Let
y m m—1 g
71) 1 - |Z1‘ + ) T
D1 — 21 — 1 ,
a (i g (- 1al) )

Dit5—=L

(D)™ S 2 p s

28 _.p Z— 21 1 1+Dllﬁz
(28) o) = o (2
— 21% 1 1 m g D1+1 Z17

+ (D7 R 14Dy =1

1-z72

and

SR . =

2P (=2 S 5 v

=5 Dzt

14+(—=1)™ Zlin, ﬁ

tP1T—%%

7(2) = £(0) +28 s
O

m 1 1+D1 1
z—z T2z

1+Zp(1—27112> 1+1 1

1+(—-1)™ zc{”n zlz

z Z1
D17

1213
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From (2.8), with the simple calculations, we obtain % =z, % =y
and
26f'(1)
2
(28— (f( ) — f(O)))
1 m
B T e o Vi
! 1—|af? APy (—1)mely (1 _ |Z1‘2>"‘$ _y <1 B |Z1‘2)'” Al (cym gt
+ m m
(1—z1)" ;e 4 (L pym—t y(1=1aP) " a+y (1= 120P)" 2 4 (-1t

Choosing suitable signs of the numbers x, y and z1, we conclude from the

last equality that the inequality (2.7) is sharp. O
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