Browse > Article
http://dx.doi.org/10.4134/CKMS.c170372

SOME RESULTS OF THE CARATHÉODORY'S INEQUALITY AT THE BOUNDARY  

Ornek, Bulent Nafi (Department of Computer Engineering Amasya University)
Publication Information
Communications of the Korean Mathematical Society / v.33, no.4, 2018 , pp. 1205-1215 More about this Journal
Abstract
In this paper, a boundary version of the $Carath{\acute{e}}odory^{\prime}s$ inequality is investigated. We shall give an estimate below ${\mid}f^{\prime}(b){\mid}$ according to the first nonzero Taylor coefficient of about two zeros, namely z = 0 and $z_1{\neq}0$. The sharpness of these estimates is also proved.
Keywords
holomorphic function; $Carath{\acute{e}}odory^{\prime}s$ inequality; angular derivative; Julia-Wolff-lemma; Schwarz lemma;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 A. Lecko and B. Uzar, A note on Julia-Caratheodory theorem for functions with fixed initial coefficients, Proc. Japan Acad. Ser. A Math. Sci. 89 (2013), no. 10, 133-137.   DOI
2 M. Mateljevic, Ahlfors-Schwarz lemma and curvature, Kragujevac J. Math. 25 (2003), 155-164.
3 M. Mateljevic, Schwarz lemma, the Caratheodory and Kobayashi metrics and applications in complex analysis, XIX GEOMETRICAL SEMINAR, At Zlatibor (2016), 1-12.
4 M. Mateljevic, Hyperbolic geometry and Schwarz lemma, ResearchGate 2016.
5 M. Mateljevic, Note on Rigidity of Holomorphic Mappings & Schwarz and Jack Lemma, (in preparation), ResearchGate.
6 B. N. Ornek, Sharpened forms of the Schwarz lemma on the boundary, Bull. Korean Math. Soc. 50 (2013), no. 6, 2053-2059.   DOI
7 B. N. Ornek, Caratheodory's inequality on the boundary, J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 22 (2015), no. 2, 169-178.
8 B. N. Ornek, A sharp Caratheodory's inequality on the boundary, Commun. Korean Math. Soc. 31 (2016), no. 3, 533-547.   DOI
9 S. G. Krantz, The Schwarz lemma at the boundary, Complex Var. Elliptic Equ. 56 (2011), no. 5, 455-468.   DOI
10 R. Osserman, A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc. 128 (2000), no. 12, 3513-3517.   DOI
11 Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Grundlehren der Mathematischen Wissenschaften, 299, Springer-Verlag, Berlin, 1992.
12 X. Tang, T. Liu, and J. Lu, Schwarz lemma at the boundary of the unit polydisk in $C^n$, Sci. China Math. 58 (2015), no. 8, 1639-1652.   DOI
13 T. A. Azeroglu and B. N. Ornek, A refined Schwarz inequality on the boundary, Complex Var. Elliptic Equ. 58 (2013), no. 4, 571-577.   DOI
14 H. P. Boas, Julius and Julia: mastering the art of the Schwarz lemma, Amer. Math. Monthly 117 (2010), no. 9, 770-785.   DOI
15 V. N. Dubinin, Bounded holomorphic functions covering no concentric circles, J. Math. Sci. (N.Y.) 207 (2015), no. 6, 825-831.   DOI
16 D. M. Burns and S. G. Krantz, Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary, J. Amer. Math. Soc. 7 (1994), no. 3, 661-676.   DOI
17 D. Chelst, A generalized Schwarz lemma at the boundary, Proc. Amer. Math. Soc. 129 (2001), no. 11, 3275-3278.   DOI
18 V. N. Dubinin, The Schwarz inequality on the boundary for functions regular in the disc, J. Math. Sci. (N. Y.) 122 (2004), no. 6, 3623-3629; translated from Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 286 (2002), Anal. Teor. Chisel i Teor. Funkts. 18, 74-84, 228-229.   DOI
19 M. Elin, F. Jacobzon, M. Levenshtein, and D. Shoikhet, The Schwarz lemma: rigidity and dynamics, in Harmonic and complex analysis and its applications, 135-230, Trends Math, Birkhauser/Springer, Cham, 2014.
20 G. M. Goluzin, Geometrical Theory of Functions of a Complex Variable, (Russian), Second edition. Edited by V. I. Smirnov. With a supplement by N. A. Lebedev, G. V. Kuzmina and Ju. E. Alenicyn, Izdat. "Nauka", Moscow, 1966.
21 M. Jeong, The Schwarz lemma and boundary fixed points, J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 18 (2011), no. 3, 275-284.
22 M. Jeong, The Schwarz lemma and its application at a boundary point, J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 21 (2014), no. 3, 219-227.