• Title/Summary/Keyword: C-D gain

Search Result 681, Processing Time 0.026 seconds

Modeling of Fitts' Movement Time Including Effect of Control-Display Gain (C-D gain의 변화를 고려한 Fitts 이동시간 추정 모델에 관한 연구)

  • Park, Kyung-soo;Koh, Bong-kee;Kim, Un-hoi
    • Journal of the Ergonomics Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.39-49
    • /
    • 2000
  • During human-computer interaction(HCI), people typically send inputs to computers through electromechanical pointing devices. Many applied studies have therefore evaluated cursor-positioning movements made with various pointing devices. Though there were so many studies about performance of various pointing devices, it was nearly impossible to compare device performance each other until the Fitts' law was applied. It does appear that Fitts' law may predict performance reasonably well for the one C-D gain level. But in varying C-D gain levels, Fitts' law could not predict movement time. This study investigated the effects of C-D gain in mouse movement time and suggested a revised Fitts' model including C-D gain as an independent variable. The revised Fitts' model may use to measure the performance of various devices in varying C-D gain levels.

  • PDF

The study of a chopper-type transistorized d.c. amplifier circuit (교류변환형 트란지스터식 직류증폭회로에 관한 연구)

  • 한만춘;최창준
    • 전기의세계
    • /
    • v.18 no.5
    • /
    • pp.12-19
    • /
    • 1969
  • The sensitivity of transistorized d.c. amplifiers is mainly limited by drift at operating point caused by ambient temperature changes. A chopper-type transistorized amplifier is necessary to obtain a high sensitivity without recourse to drift compensation which requires the adjustment of several balancing controls. A chopper-stabilized system consisting of an electro-mechanical chopper for input and output and a high-gain a.c. amplifier is designed and analyzed. The gain of the a.c. amplifier, expressed as the ratio of voltages, is larger than 80db in the band of 50C/S - 100KC/S. The complete system gives an open-loop gain of 68db at direct current. The offset voltage is 20.mu.V referred in input and the voltage drift at the input is less than 10.mu.V/hr at 25.deg.C. This type of amplifier would be useful for the high-gain transistorized d.c. amplifier for analog computers. Also, due to the high input impedance, it is suitable for amplification of signals from wide range of source impedances.

  • PDF

A compensation method for a temperature-dependent gain tilt in L-band EDFA using a voltage-controlled attenuator (L-band EDFA 에서의 온도에 따른 이득 변화와 가변 감쇄기를 이용한 온도 보상)

  • 이원경;정희상;주무정
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.1
    • /
    • pp.12-16
    • /
    • 2003
  • This paper presents a compensation method for a temperature-dependent gain tilt in L-band erbium-doped fiber amplifier using a voltage-controlled attenuator. The gain tilts in the L-band of 1570-1605 nm due to a temperature change have negative slopes, whereas they have positive slopes for the increasing optical input powers in a saturation region. The proposed method utilizes these opposite gain variations to compensate for the gain tilt over a wide range of temperature. While applying forty channels with a channel spacing of 100 GHz in the L-band and changing the ambient temperature from 0 to $50^{\circ}C$, the compensation method maintained the gain deviation within 1 dB.

The Design of High Gain Waveguide Array Antenna Combining Horn Antenna (혼안테나를 결합한 고 이득 도파관 배열 안테나 설계)

  • Lee, Han-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.257-260
    • /
    • 2014
  • In this paper, a high gain waveguide array antenna combining horn antenna on slot radiator was designed. And the fabricated antenna showed enough gain, improved efficiency and broadband characteristics for receiving satellite signals, compare to conventional microstrip antenna which has dielectric loss and radiation loss on transmission line. For easy fabrication, the waveguide structure was composed by 3-stages of radiator, signal coupler and transmission line. By experiment, the array waveguide antenna of 4 by 16 showed 28.3[dBi] gain and 2:1 of VSWR. And by combining horn antenna structure, the gain was increased 1[dB]. The received signal from Koreasat 6 by measurement showed 16[dBc] of C/N on BS(Broadcasting Satellite)-band and 14[dBc] of C/N on CS(Communication Satellite)-band.

Simulation and Experimental Validation of Gain-Control Parallel Hybrid Fiber Amplifier

  • Ali, Mudhafar Hussein;Abdullah, Fairuz;Jamaludin, Md. Zaini;Al-Mansoori, Mohammed Hayder;Al-Mashhadani, Thamer Fahad;Abass, Abdulla Khudiar
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.657-662
    • /
    • 2014
  • We demonstrate a simulation of a parallel hybrid fiber amplifier in the C+L-band with a gain controlling technique. A variable optical coupler is used to control the input signal power for both EDFA and RFA branches. The gain spectra of the C+L-band are flattened by optimizing the coupling ratio of the input signal power. In order to enhance the pump conversion efficiency, the EDFA branch was pumped by the residual Raman pump power. A gain bandwidth of 60 nm from 1530 nm to 1590 nm is obtained with large input signal power less than -5 dBm. The gain variation is about 1.06 dB at a small input signal power of -30 dBm, and it is reduced to 0.77 dB at the large input signal power of -5 dBm. The experimental results show close agreement with the simulation results.

8.2-GHz band radar RFICs for an 8 × 8 phased-array FMCW receiver developed with 65-nm CMOS technology

  • Han, Seon-Ho;Koo, Bon-Tae
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.943-950
    • /
    • 2020
  • We propose 8.2-GHz band radar RFICs for an 8 × 8 phased-array frequency-modulated continuous-wave receiver developed using 65-nm CMOS technology. This receiver panel is constructed using a multichip solution comprising fabricated 2 × 2 low-noise amplifier phase-shifter (LNA-PS) chips and a 4ch RX front-end chip. The LNA-PS chip has a novel phase-shifter circuit for low-voltage operation, novel active single-to-differential/differential-to-single circuits, and a current-mode combiner to utilize a small area. The LNA-PS chip shows a power gain range of 5 dB to 20 dB per channel with gain control and a single-channel NF of 6.4 dB at maximum gain. The measured result of the chip shows 6-bit phase states with a 0.35° RMS phase error. The input P1 dB of the chip is approximately -27.5 dBm at high gain and is enough to cover the highest input power from the TX-to-RX leakage in the radar system. The gain range of the 4ch RX front-end chip is 9 dB to 30 dB per channel. The LNA-PS chip consumes 82 mA, and the 4ch RX front-end chip consumes 97 mA from a 1.2 V supply voltage. The chip sizes of the 2 × 2 LNA-PS and the 4ch RX front end are 2.39 mm × 1.3 mm and 2.42 mm × 1.62 mm, respectively.

Amplitude Modulation Response and Linearity Improvement of Directly Modulated Lasers Using Ultra-Strong Injection-Locked Gain-Lever Distributed Bragg Reflector Lasers

  • Sung, Hyuk-Kee;Wu, Ming C
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.303-308
    • /
    • 2008
  • Directly modulated fiber-optic links generally suffer higher link loss and larger signal distortion than externally modulated links. These result from the electron-photon conversion loss and laser modulation dynamics. As a method to overcome the drawbacks, we have experimentally demonstrated the RF performance of directly modulated, ultra-strong injection-locked gain-lever distributed Bragg reflector (DBR) lasers. The free-running DBR lasers exhibit an improved amplitude modulation efficiency of 12.4 dB under gain-lever modulation at the expense of linearity. By combining gain-lever modulation with ultra-strong optical injection locking, we can gain the benefits of both improved modulation efficiency from the gain-lever effect, plus improved linearity from injection locking. Using an injection ratio of R=11 dB, a 23.4-dB improvement in amplitude response and an 18-dB improvement in spurious-free dynamic range have been achieved.

A 41dB Gain Control Range 6th-Order Band-Pass Receiver Front-End Using CMOS Switched FTI

  • Han, Seon-Ho;Nguyen, Hoai-Nam;Kim, Ki-Su;Park, Mi-Jeong;Yeo, Ik-Soo;Kim, Cheon-Soo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.675-681
    • /
    • 2016
  • A 41dB gain control range $6^{th}$-order band-pass receiver front-end (RFE) using CMOS switched frequency translated impedance (FTI) is presented in a 40 nm CMOS technology. The RFE consists of a frequency tunable RF band-pass filter (BPF), IQ gm cells, and IQ TIAs. The RF BPF has wide gain control range preserving constant filter Q and pass band flatness due to proposed pre-distortion scheme. Also, the RF filter using CMOS switches in FTI blocks shows low clock leakage to signal nodes, and results in low common mode noise and stable operation. The baseband IQ signals are generated by combining baseband Gm cells which receives 8-phase signal outputs down-converted at last stage of FTIs in the RF BPF. The measured results of the RFE show 36.4 dB gain and 6.3 dB NF at maximum gain mode. The pass-band IIP3 and out-band IIP3@20 MHz offset are -10 dBm and +12.6 dBm at maximum gain mode, and +14 dBm and +20.5 dBm at minimum gain mode, respectively. With a 1.2 V power supply, the current consumption of the overall RFE is 40 mA at 500 MHz carrier frequency.

Design of 0.5V Electro-cardiography (전원전압 0.5V에서 동작하는 심전도계)

  • Sung, Min-Hyuk;Kim, Jea-Duck;Choi, Seong-Yeol;Kim, Yeong-Seuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1303-1310
    • /
    • 2016
  • In this paper, electrocardiogram (ECG) analog front end with supply voltage of 0.5V has been designed and verified by measurements of fabricated chip. ECG is composed of instrument amplifier, 6th order gm-C low pass filter and variable gain amplifier. The instrument amplifier is designed to have gain of 34.8dB and the 6th order gm-C low pass filter is designed to obtain the cutoff frequency of 400Hz. The operational transconductance amplifier of the low pass filter utilizes body-driven differential input stage for low voltage operation. The variable gain amplifier is designed to have gain of 6.1~26.4dB. The electrocardiogram analog front end are fabricated in TSMC $0.18{\mu}m$ CMOS process with chip size of $858{\mu}m{\times}580{\mu}m$. Measurements of the fabricated chip is done not to saturate the gain of ECG by changing the external resistor and measured gain of 28.7dB and cutoff frequency of 0.5 - 630Hz are obtained using the supply voltage of 0.5V.

Fabrication and Characterization of Low Noise Amplifier using MCM-C Technology (MCM-C 기술을 이용한 저잡음 증폭기의 제작 및 특성평가)

  • Cho, H.M.;Lim, W.;Lee, J.Y.;Kang, N.K.;Park, J.C.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.11a
    • /
    • pp.61-64
    • /
    • 2000
  • We fabricated and characterized Low Noise Amplifier (LNA) using MCM-C (Multi-Chip-Module-Cofired) technology for 2.14 GHz IMT-2000 mobile terminal application. First, We designed LNA circuits and simulated it's high frequency characteristics using circuits simulator. For the simulation, we adopted high frequency libraries of all the devices used in LNA samples. By the simulation, Gain was 17 dB and Noise Figure was 1.4 dB. We used multilayer process of LTCC (Low Temperature Co-fired Ceramics) substrate and conductor, resistor pattern for the MCM-C LNA fabrication. We made 2 buried inductors, 2 buried capacitors and 3 buried resistors. The number of the total layers was 6. On the top layer, we patterned microstrip line and pads for the SMT device. We measured the high frequency characteristics, and the results were 14.7 dB Gain and 1.5 dB Noise Figure.

  • PDF