• Title/Summary/Keyword: C/EBP ${\alpha}$

Search Result 177, Processing Time 0.022 seconds

Effect of Myadis Stigma Water Extract on Adipogenesis and Blood Glucose in 3T3-L1 Adipocytes and db/db Mice (3T3-L1 지방세포와 db/db 마우스에서 옥수수수염 물 추출물의 지방생성 억제 및 혈당 저하효과)

  • Min, Oh-Jin;Sharma, Bhesh Raj;Park, Chul-Min;Rhyu, Dong-Young
    • Korean Journal of Pharmacognosy
    • /
    • v.42 no.2
    • /
    • pp.201-208
    • /
    • 2011
  • Obesity occur from the imbalance between energy intake and energy expenditure. Obesity is a complex chronic disease that is suggested to cause other metabolic disorders such as type 2 diabetes, hyperlipidemia, hypertension, and arteriosclerosis. In this study, our purpose is to investigate the anti-hyperglycemic and anti-obesitic effects of Maydis stigma water extract in 3T3-L1 adipocytes and db/db mice. Maydis stigma water extract at dose of 100 and 500 ${\mu}g/ml$ slowly inhibited cell viability as compared to that of control in mature adipocytes. Also, the additions of 50 and 250 ${\mu}g/ml$ of Maydis stigma water extract significantly inhibited the lipid accumulations and CCAAT/enhancer-binding protein(C/EBP) ${\alpha}$ and peroxisome proliferator-activated receptor(PPAR) ${\gamma}$ expressions with dose-dependent manner in 3T3-L1 adipocytes. Maydis stigma water extract at 250, 500, and 1000 ${\mu}g/ml$ only showed the increasing pattern on lipolysis activity. The oral treatment of Maydis stigma water extract (100 or 400 mg/kg body weight) in db/db mice only showed tendency to decrease body weight, food efficiency ratio (FER), HbA1c, blood glucose, total cholesterol, triglyceride, and the adipocyte size of in db/db mice. However, Maydis stigma water extract increased the insulin level in a dose dependent manner. Thus these results indicate that Maydis stigma water extracxt inhibits adipogenesis through regulation of C/EBP${\alpha}$ and PPAR${\gamma}$ expressions in 3T3-L1 adipocytes and shows anti-hyperglycemic effect through increase of insulin secretion in db/db mice.

Anti-adipogenic Activity of Cortex ulmi pumilae Extract in 3T3-L1 Preadipocytes (유근피 추출물의 3T3-L1지방전구세포의 분화 억제 효능에 관한 연구)

  • Jeong, Hyun Young;Jin, Soojung;Nam, Soo Wan;Hyun, Sook Kyung;Kim, Sung Gu;Kim, Byung Woo;Kwon, Hyun Ju
    • Journal of Life Science
    • /
    • v.24 no.2
    • /
    • pp.137-147
    • /
    • 2014
  • Cortex ulmi pumilae, the cortex of Ulmus davidiana var. japonica, has been used in traditional folk medicine for its anti-inflammatory effect. Although its various bioactivities such as anti-inflammatory, anti-microbial, and anti-cancer, have been reported, the anti-adipogenic activity of cortex ulmi pumilae remains unclarified. In the present study, we investigated the effect of cortex ulmi pumilae extract on adipocyte differentiation in 3T3-L1 preadipocytes. Treatment with cortex ulmi pumilae extract significantly reduced the formation of lipid droplets and triglyceride content in a dose-dependent manner; this is associated with an inhibition of the adipogenic transcription factors, CCAAT/enhancer binding protein ${\alpha}$ ($C/EBP{\alpha}$), $C/EBP{\beta}$, and peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$). In addition, cortex ulmi pumilae extract treatment during the early stage of adipogenesis showed more efficient anti-adipogenic activity than treatment during other stages of adipogenesis. Cortex ulmi pumilae extract also inhibited cell proliferation and induced G1 arrest of 3T3-L1 cells in the early stage of adipogenesis. This was associated with upregulated expression of Cdk inhibitor p21 and downregulated expression of cyclin E and phospho-Rb, indicating that cortex ulmi pumilae extract blocks mitotic clonal expansion by cell cycle regulation. Taken together, these results suggest that cortex ulmi pumilae extract possesses anti-adipogenic activity through the inhibition of adipocyte differentiation by blocking mitotic clonal expansion.

The Role of Resveratrol in Lipid Metabolism: A Systematic Review of Current Basic and Translational Evidence (레스베라트롤의 지질 대사 효과에 대한 체계적 문헌 고찰)

  • Choi, Seung Kug;Moon, Hyun-Seuk
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.2
    • /
    • pp.67-73
    • /
    • 2016
  • Resveratrol is a non-flavonoid polyphenol which belongs to the stilbenes group and is naturally generated in several plants in response to damage or fungal invasion. It has been shown in published studies that resveratrol has an anti-adipogenic effect. A good consensus regarding the involvement of a down-regulation of $C/EBP{\alpha}$ and $PPAR{\gamma}$ in this effect has been reached. In addition, different metabolic pathways involved in triacylglycerol metabolism in white adipose tissue have been shown to be regulated by resveratrol. Concerning lipolysis, though this compound in itself seems to be unable to cause lipolysis, it increases lipid mobilization stimulated by ${\beta}-adrenergic$ agents. The increase in brown adipose tissue thermogenesis, and accordingly the associated energy dissipation, can attribute to accounting for the body-fat reducing effect of resveratrol. Besides its effects on adipose tissue, resveratrol can also acts on other organs and tissues. Therefore, it increases mitochondrial biogenesis and accordingly fatty acid oxidation in skeletal muscle and liver. This effect can also attribute to the body-fat reducing effect of this molecule. The present review purposes to collect the evidence concerning the potential mechanisms of action which underlie the anti-obesity effects of resveratrol, acquired either in cultured cells lines and animal models.

Ethanol Extracts of Mori Folium Inhibit Adipogenesis Through Activation of AMPK Signaling Pathway in 3T3-L1 Preadipocytes (3T3-L1 세포에서 상엽이 유발하는 AMPK signaling pathway를 통한 adipogenesis 억제에 관한 연구)

  • Ji, Seon Young;Jeon, Keong Yoon;Jeong, Jin Woo;Hong, Su Hyun;Huh, Man Kyu;Choi, Yung Hyun;Park, Cheol
    • Journal of Life Science
    • /
    • v.27 no.2
    • /
    • pp.155-163
    • /
    • 2017
  • Mori Folium, the leaf of Morus alba, is a traditional medicinal herb that shows various pharmacological activities such as antiinflammatory, antidiabetic, antimelanogenesis, antioxidant, antibacterial, antiallergic, and immunomodulatory activities. However, the mechanisms of their inhibitory effects on adipocyte differentiation and adipogenesis remain poorly understood. In the present study, we investigated the inhibition of adipocyte differentiation and adipogenesis by ethanol extracts of Mori Folium (EEMF) in 3T3-L1 preadipocytes. Treatment with EEMF suppressed the terminal differentiation of 3T3-L1 preadipocytes in a dose-dependent manner, as confirmed by a decrease in the lipid droplet number and lipid content through Oil Red O staining. EEMF significantly reduced the accumulation of cellular triglyceride, which is associated with a significant inhibition of pro-adipogenic transcription factors, including sterol regulatory element-binding protein-1c (SREBP-1c), peroxisome proliferator-activated receptor-${\gamma}$ ($PPAR{\gamma}$), and CCAAT/enhancer-binding proteins ${\alpha}$ ($C/EBP{\alpha}$) and ${\beta}$ ($C/EBP{\beta}$). In addition, EEMF potentially downregulated the expression of adipocyte-specific genes, including adipocyte fatty acid binding protein (aP2) and leptin. Furthermore, EEMF treatment effectively increased the phosphorylation of the AMP-activated protein kinase (AMPK) and acetyl CoA carboxylase (ACC); however, treatment with a potent inhibitor of AMPK, compound C, significantly restored the EEMF-induced inhibition of pro-adipogenic transcription factors and adipocyte-specific genes. These results together indicate that EEMF has preeminent effects on the inhibition of adipogenesis through the AMPK signaling pathway, and further studies will be needed to identify the active compounds in Mori Folium.

Effects of Fermented Lotus Extracts on the Differentiation in 3T3-L1 Preadipocytes (3T3-L1 전지방세포에서 연잎-연근 혼합 발효물의 지방세포 분화 억제 효과)

  • Lee, Sin Ji;Bose, Shambhunath;Lee, Su-Jin;Jeong, Ji-Eun;Koo, Byung-Soo;Kim, Dong-Il;Kim, Hojun
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.13 no.2
    • /
    • pp.74-83
    • /
    • 2013
  • Objectives: This study was performed to evaluate the effects of fermented lotus extracts on the inhibition of differentiation in 3T3-L1 preadipocytes. Methods: Extracts of lotus leaf and lotus root were fermented using 4 different probiotics separately, including Lactobacillus plantarum, Lactobacillus rhamnosus, Bifidobacterium breve, and Bifidobacterium longum. Inhibition of preadipocyte differentiation was examined by Oil red O dye staining. Expressions of adipogenic transcription factors including CCAAT/enhancer binding proteins (C/$EBP{\alpha}$) and peroxisome proliferators-activated receptor ${\gamma}$ ($PPAR{\gamma}$) were analyzed by real time polymerase chain reaction and Western blotting analysis. Results: Fermented lotus extracts inhibited adipogenic transcription factors by inhibiting preadipocytes differentiation. All of the groups fermented by 4 kinds of probiotics showed reduction in Oil Red O dye staining. Bifidobacterium breve showed the most effective inhibition of C/$EBP{\alpha}$. Bifidobacterium breve and Bifidobacterium longum showed the best downregulation of $PPAR{\gamma}$ expressions compared with the control and the unfermented lotus group. Conclusions: Fermented lotus extracts showed significant effects on inhibition of preadipocyte differentiation in 3T3-L1 preadipocytes showing correlation with insulin sensitivity and lipid metabolism related with obesity.

Anti-Obesity Effects of Starter Fermented Kimchi on 3T3-L1 Adipocytes

  • Lee, Kyung-Hee;Song, Jia-Le;Park, Eui-Seong;Ju, Jaehyun;Kim, Hee-Young;Park, Kun-Young
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.4
    • /
    • pp.298-302
    • /
    • 2015
  • The anti-obesity effects of starter (Leuconostoc mesenteroides+Lactobacillus plantarum) fermented kimchi on 3T3-L1 adipocyte were studied using naturally fermented kimchi (NK), a functional kimchi (FK, NK supplemented with green tea), and FK supplemented with added starters (FKS). Oil red O staining and cellular levels of triglyceride (TG) and glycerol were used to evaluate the in vitro anti-obesity effects of these kimchis in 3T3-L1 cells. The expressions of adipogenesis/lipogenesis-related genes of peroxisome proliferator-active receptor (PPAR)-${\gamma}$, CCAAT/enhance-binding protein (C/EBP)-${\alpha}$, and fatty acid synthase (FAS) were determined by RT-PCR. Kimchis, especially FKS, markedly decreased TG levels and increased levels of intracellular glycerol and lipid lipolysis. In addition, FKS also reduced the mRNA levels of PPAR-${\gamma}$, C/EBP-${\alpha}$, and FAS, which are related to adipogenesis/lipogenesis in 3T3-L1 cells. These results suggest the anti-obesity effects of FKS were to due to enhanced lipolysis and reduced adipogenesis/lipogenesis in 3T3-L1 adipocytes.

Chitosan Oligosaccharides Inhibit Adipogenesis in 3T3-L1 Adipocytes

  • Cho, Eun-Jae;Rahman, Atiar;Kim, Sang-Woo;Baek, Yu-Mi;Hwang, Hye-Jin;Oh, Jung-Young;Hwang, Hee-Sun;Lee, Sung-Hak;Yun, Jong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.80-87
    • /
    • 2008
  • The 3T3-L1 cell line is a well-established and commonly used in vitro model to assess adipocyte differentiation. Over the course of several days, confluent 3T3-L1 cells can be converted to adipocytes in the presence of an adipogenic cocktail. In this study, the effects of chitosan oligosaccharides (CO) on adipocyte differentiation of 3T3-L1 cells were studied. The CO significantly decreased lipid accumulation, a marker of adipogenesis, in a dose-dependent manner. The low molecular mass CO (1-3 kDa) were the most effective at inhibiting adipocyte differentiation. Moreover, mRNA expression levels of both CCAAT/enhancer-binding protein (C/EBP) ${\alpha}$ and peroxisome proliferator-activated receptor (PPAR) ${\gamma}$, the key adipogenic transcription factors, were markedly decreased by CO treatments. CO also significantly down regulated adipogenic marker proteins such as leptin, adiponectin, and resistin. Our results suggest a role for CO as antiobesity agents by inhibiting adipocyte differentiation mediated through the down regulated expression of adipogenic transcription factors and other specific genes.

Acer okamotoanum Nakai Leaf Extract Inhibits Adipogenesis Via Suppressing Expression of PPAR γ and C/EBP α in 3T3-L1 Cells

  • Kim, Eun-Joo;Kang, Min-jae;Seo, Yong Bae;Nam, Soo-Wan;Kim, Gun-Do
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.10
    • /
    • pp.1645-1653
    • /
    • 2018
  • The genus Acer contains several species with various bioactivities including antioxidant, antitumor and anti-inflammatory properties. However, Acer okamotoanum Nakai, one species within this genus has not been fully studied yet. Therefore, in this study, we investigated the anti-adipogenic activities of leaf extract from A. okamotoanum Nakai (LEAO) on 3T3-L1 preadipocytes. Adipogenesis is one of the cell differentiation processes, which converts preadipocytes into mature adipocytes. Nowadays, inhibition of adipogenesis is considered as an effective strategy in the field of anti-obesity research. In this study, we observed that LEAO decreased the accumulation of lipid droplets during adipogenesis and down-regulated the expression of key adipogenic transcription factors such as peroxisome proliferator-activated receptor ${\gamma}$ (PPAR ${\gamma}$) and CCAAT/enhancer binding protein ${\alpha}$ (C/EBP ${\alpha}$). In addition, LEAO inactivated PI3K/Akt signaling and its downstream factors that promote adipogenesis by inducing the expression of PPAR ${\gamma}$. LEAO also activated ${\beta}$-catenin signaling, which prevents the adipogenic program by suppressing the expression of PPAR ${\gamma}$. Therefore, we found that treatment with LEAO is effective for attenuating adipogenesis in 3T3-L1 cells. Consequently, these findings suggest that LEAO has the potential to be used as a therapeutic agent for preventing obesity.

Ethanol extract of Plantago asiatica L. controls intracellular fat accumulation and lipid metabolism in 3T3-L1 Adipocytes (차전초의 에탄올추출물이 3T3-L1 지방세포의 지방축적 및 지질대사에 미치는 영향)

  • Jeon, Seo Young;Park, Ji Young;Shin, Insoon;Kim, Sung Ok;An, Hee Duk;Kim, Mi Ryeo
    • The Korea Journal of Herbology
    • /
    • v.29 no.4
    • /
    • pp.77-82
    • /
    • 2014
  • Objectives : The effects of ethanol extract of Plantago asiatica L. were investgated on adipocyte differentiation, lipopogenesis, lipolysis and apoptosis using differnentiated 3T3-L1 adipocytes. Methods : Plantago asiatica L. was extracted with ethanol (CCE). We carried on MTT assay for cell proliferation, Oil Red O staining for determination of cell differentiation and intracelluar adipogenesis. TUNEL staining assay for cell apoptosis, and Western blot analysis for measurement of pAMPK and pACC, $C/EBP{\alpha}$, $PPAR{\gamma}$ protein expressions were performed. Results : The addition of CCE up to 0.2 mg/ml into cell culture media showed no cytotoxicity. Treatment of 0.2 mg/ml CCE significantly inhibited differentiation in 3T3-L1 preadipocytes. Lipid accumulation of the CCE treated cells was decreased compared with that of control. Induction of cell apoptosis was increased in CCE treated cells compared with that of control. AMPK and ACC levels of the cells with 0.2 mg/ml CCE were led to phosphorylation and also expressions of $C/EBP{\alpha}$ and $PPAR{\gamma}$, as adipogenic transcription factors, were suppressed compared with those of control. Conclusions : Taken together, these results provide evidence that CCE has a regulatory role in lipid metabolism that is related to differentiation into adipocytes, adipogenesis and apoptosis.

Effects of Carthamus Tinctorius Extract on Adipogenic Differentiation of Mouse Bone Marrow-Derived Mesenchymal Stromal Stem Cells (홍화 추출물이 생쥐 골수 유래 중간엽 줄기세포의 지방분화에 미치는 영향)

  • Yu, Sung-ryul;Shin, Seon-mi
    • The Journal of Internal Korean Medicine
    • /
    • v.38 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • Objective: This study investigated the effect of purified Carthamus tinctorius (C. tinctorius) extracted with a hot water and ethanol method on adipogenic differentiation of mouse bone marrow-derived mesenchymal stromal stem cells (mBMSCs). Methods: The C. tinctorius was extracted using hot water and ethanol. The samples were concentrated by a rotary evaporator and were then dried using a freeze-dryer. The mBMSCs were cultured and maintained in a minimum essential medium eagle alpha (${\alpha}-MEM$) supplemented with 10% FBS and 1% antibiotic antimycotic solution. To induce adipogenic differentiation, the cells were treated with Dulbecco's modified eagle's medium-low glucose (DMEM-LG) containing 1 mg/mL insulin, 1 mM dexamethasone, and 0.5 mM 3-isobutyl-1-methylxanthine. To evaluate the adipogenic differentiation ability, oil-red O staining was performed after adipogenic differentiation for 21 days. The mRNA expression and protein level of adipogenic-related genes were quantified by quantitative real-time PCR and western blotting, respectively. Results: In the results of the MTT assay, no concentrations of C. tinctorius extracts showed toxicity on mBMSCs, so we fixed the treatment concentration of the extract at 100 ng/mL. In oil-red O staining, the water-C. tinctorius extract treatment significantly decreased adipogenic differentiation compared with the control and ethanol extract groups. The water-C. tinctorius extract group in particular showed reduced mRNA and protein expression of Peroxisome proliferator-activated receptor gamma ($Ppar{\gamma}$) and CCAAT/enhancer-binding protein alpha ($C/ebp{\alpha}$), which are adipogenic-related transcription factors. Conclusion: These data suggest that extract of C. tinctorius decreased the adipogenic differentiation of mBMSCs, while only water-C. tinctorius extract had an effect on different adipogenesis in mBMSCs. The C. tinctorius will be a useful therapeutic reagent for the prevention of obesity-related diseases such as diabetes, hyperlipidemia, coronary artery disease, and osteoporosis.