Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.2.155

Ethanol Extracts of Mori Folium Inhibit Adipogenesis Through Activation of AMPK Signaling Pathway in 3T3-L1 Preadipocytes  

Ji, Seon Young (Department of Molecular Biology, College of Natural Sciences and Human Ecology, Dongeui University)
Jeon, Keong Yoon (Department of Molecular Biology, College of Natural Sciences and Human Ecology, Dongeui University)
Jeong, Jin Woo (Department of Biochemistry, Dongeui University College of Korean Medicine)
Hong, Su Hyun (Department of Biochemistry, Dongeui University College of Korean Medicine)
Huh, Man Kyu (Department of Molecular Biology, College of Natural Sciences and Human Ecology, Dongeui University)
Choi, Yung Hyun (Department of Biochemistry, Dongeui University College of Korean Medicine)
Park, Cheol (Department of Molecular Biology, College of Natural Sciences and Human Ecology, Dongeui University)
Publication Information
Journal of Life Science / v.27, no.2, 2017 , pp. 155-163 More about this Journal
Abstract
Mori Folium, the leaf of Morus alba, is a traditional medicinal herb that shows various pharmacological activities such as antiinflammatory, antidiabetic, antimelanogenesis, antioxidant, antibacterial, antiallergic, and immunomodulatory activities. However, the mechanisms of their inhibitory effects on adipocyte differentiation and adipogenesis remain poorly understood. In the present study, we investigated the inhibition of adipocyte differentiation and adipogenesis by ethanol extracts of Mori Folium (EEMF) in 3T3-L1 preadipocytes. Treatment with EEMF suppressed the terminal differentiation of 3T3-L1 preadipocytes in a dose-dependent manner, as confirmed by a decrease in the lipid droplet number and lipid content through Oil Red O staining. EEMF significantly reduced the accumulation of cellular triglyceride, which is associated with a significant inhibition of pro-adipogenic transcription factors, including sterol regulatory element-binding protein-1c (SREBP-1c), peroxisome proliferator-activated receptor-${\gamma}$ ($PPAR{\gamma}$), and CCAAT/enhancer-binding proteins ${\alpha}$ ($C/EBP{\alpha}$) and ${\beta}$ ($C/EBP{\beta}$). In addition, EEMF potentially downregulated the expression of adipocyte-specific genes, including adipocyte fatty acid binding protein (aP2) and leptin. Furthermore, EEMF treatment effectively increased the phosphorylation of the AMP-activated protein kinase (AMPK) and acetyl CoA carboxylase (ACC); however, treatment with a potent inhibitor of AMPK, compound C, significantly restored the EEMF-induced inhibition of pro-adipogenic transcription factors and adipocyte-specific genes. These results together indicate that EEMF has preeminent effects on the inhibition of adipogenesis through the AMPK signaling pathway, and further studies will be needed to identify the active compounds in Mori Folium.
Keywords
3T3-L1 preadipocytes; adipogenesis; AMPK; Mori Folium;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ji, S., Doumit, M. E. and Hill, R. A. 2015. Regulation of adipogenesis and key adipogenic gene expression by 1, 25-dihydroxyvitamin D in 3T3-L1 cells. PLoS One 10, e0126142.   DOI
2 Jiang, L. D., Xuan, G. D., Zhao, L., Zhu, Y. F. and Lou, X. F. 2011. Study on determination and pharmacokinetics of metabolites from Folium Mori extract in rats. Zhejiang Da Xue Xue Bao Yi Xue Ban 40, 395-401.
3 Kim, H. G., Jeong, H. U., Park, G., Kim, H., Lim, Y. and Oh, M. S. 2015. Mori folium and mori fructus mixture attenuates high-fat diet-induced cognitive deficits in mice. Evid. Based Complement Alternat. Med. 2015, 379418.
4 Le Lay, S. and Dugail, I. 2009. Connecting lipid droplet biology and the metabolic syndrome. Prog. Lipid Res. 48, 191-195.   DOI
5 Lee, I., Kim, J., Ryoo, I., Kim, Y., Choo, S., Yoo, I., Min, B., Na, M., Hattori, M. and Bae, K. 2010. Lanostane triterpenes from Ganoderma lucidum suppress the adipogenesis in 3T3-L1 cells through down-regulation of SREBP- 1c. Bioorg. Med. Chem. Lett. 20, 5577-5581.   DOI
6 Liang, Y. C., Yang, M. T., Lin, C. J., Chang, C. L. and Yang, W. C. 2016. Bidens pilosa and its active compound inhibit adipogenesis and lipid accumulation via down-modulation of the C/EBP and $PPAR{\gamma}$ pathways. Sci. Rep. 6, 24285.   DOI
7 He, Y., Li, Y., Zhao, T., Wang, Y. and Sun, C. 2013. Ursolic acid inhibits adipogenesis in 3T3-L1 adipocytes through LKB1/AMPK pathway. PLoS One 8, e70135.   DOI
8 Attie, A. D. and Scherer, P. E. 2009. Adipocyte metabolism and obesity. J. Lipid. Res. 50, S395-399.   DOI
9 Mitsuhashi, K., Senmaru, T., Fukuda, T., Yamazaki, M., Shinomiya, K., Ueno, M., Kinoshita, S., Kitawaki, J., Katsuyama, M., Tsujikawa, M., Obayashi, H., Nakamura, N. and Fukui, M. 2016. Testosterone stimulates glucose uptake and GLUT4 translocation through LKB1/AMPK signaling in 3T3-L1 adipocytes. Endocrine 51, 174-184.   DOI
10 Chao, P. Y., Lin, K. H., Chiu, C. C., Yang, Y. Y., Huang, M. Y. and Yang, C. M. 2013. Inhibitive effects of mulberry leaf-related extracts on cell adhesion and inflammatory response in human aortic endothelial cells. Evid. Based Complement Alternat. Med. 2013, 267217.
11 Padilla-Benavides, T., Velez-delValle, C., Marsch-Moreno, M., Castro-Munozledo, F. and Kuri-Harcuch, W. 2016. Lipogenic enzymes complexes and cytoplasmic lipid droplet formation during adipogenesis. J. Cell Biochem. 117, 2315-2326.   DOI
12 Pang, J., Choi, Y. and Park, T. 2008. Ilex paraguariensis extract ameliorates obesity induced by high-fat diet: potential role of AMPK in the visceral adipose tissue. Arch. Biochem. Biophys. 476, 178-185.   DOI
13 Popkin, B. M., Adair, L. S. and Ng, S. W. 2012. Global nutrition transition and the pandemic of obesity in developing countries. Nutr. Rev. 70, 3-21.   DOI
14 Shen, Q. W., Zhu, M. J., Tong, J., Ren, J. and Du, M. 2007. Ca2+/calmodulin-dependent protein kinase kinase is involved in AMP-activated protein kinase activation by alpha- lipoic acid in C2C12 myotubes. Am. J. Physiol. Cell Physiol. 293, C1395-1403.   DOI
15 Siersbaek, R., Baek, S., Rabiee, A., Nielsen, R., Traynor, S., Clark, N., Sandelin, A., Jensen, O. N., Sung, M. H., Hager, G. L. and Mandrup, S. 2014. Molecular architecture of transcription factor hotspots in early adipogenesis. Cell Rep. 7, 1434-1442.   DOI
16 Spiegelman, B. M. and Flier, J. S. 2001. Obesity and the regulation of energy balance. Cell 104, 531-543.   DOI
17 Derosa, G., Cicero, A. F., Murdolo, G., Piccinni, M. N., Fogari, E., Bertone, G., Ciccarelli, L. and Fogari, R. 2005. Efficacy and safety comparative evaluation of orlistat and sibutramine treatment in hypertensive obese patients. Diabetes Obes. Metab. 7, 47-55.   DOI
18 White, U. A. and Stephens, J. M. 2010. Transcriptional factors that promote formation of white adipose tissue. Mol. Cell Endocrinol. 318, 10-14.   DOI
19 Williams, E. P., Mesidor, M., Winters, K., Dubbert, P. M. and Wyatt, S. B. 2015. Overweight and obesity: prevalence, consequences, and causes of a growing public health problem. Curr. Obes. Rep. 4, 363-370.   DOI
20 Chen, H. C. and Farese, R. V. Jr. 2000. DGAT and triglyceride synthesis: a new target for obesity treatment? Trends Cardiovasc. Med. 10, 188-192.   DOI
21 Dong, J., Ishimori, N., Paigen, B., Tsutsui, H. and Fujii, S. 2008. Role of modulator recognition factor 2 in adipogenesis and leptin expression in 3T3-L1 cells. Biochem. Biophys. Res. Commun. 366, 551-555.   DOI
22 Esposito, P., Rampino, T., Gregorini, M., Soccio, G., Piotti, G., Bedino, G., Balenzano, C. T., Roscini, E., Cosmai, L., Portalupi, V., Libetta, C. and Dal Canton, A. 2008. Severe symptomatic hyponatremia during sibutramine therapy: a case report. Am. J. Kidney Dis. 52, 137-139.   DOI
23 Gesta, S., Tseng, Y. H. and Kahn, C. R. 2007. Developmental origin of fat: tracking obesity to its source. Cell 131, 242-256.   DOI
24 Evans, M., Park, Y., Pariza, M., Curtis, L., Kuebler, B. and McIntosh, M. 2001. Trans-10,cis-12 conjugated linoleic acid reduces triglyceride content while differentially affecting peroxisome proliferator activated receptor gamma2 and aP2 expression in 3T3-L1 preadipocytes. Lipids 36, 1223-1232.   DOI
25 Fisslthaler, B. and Fleming, I. 2009. Activation and signaling by the AMP-activated protein kinase in endothelial cells. Circ. Res. 105, 114-127.   DOI
26 Furukawa, S., Fujita, T., Shimabukuro, M., Iwaki, M., Yamada, Y., Nakajima, Y., Nakayama, O., Makishima, M., Matsuda, M. and Shimomura, I. 2004. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest. 114, 1752-1761.   DOI
27 Goldberg, I. J. 2012. Triglyceride: one molecule at the center of health and disease. Biochim. Biophys. Acta. 1821, 719-720.   DOI
28 Yuan, H. D. and Piao, G. C. 2011. An active part of Artemisia sacrorum Ledeb. inhibits adipogenesis via the AMPK signaling pathway in 3T3-L1 adipocytes. Int. J. Mol. Med. 27, 531-536.
29 Yang, X., Heckmann, B. L., Zhang, X., Smas, C. M. and Liu, J. 2013. Distinct mechanisms regulate ATGL-mediated adipocyte lipolysis by lipid droplet coat proteins. Mol. Endocrinol. 27, 116-126.   DOI
30 Yano, T., Kobori, S., Sakai, M., Anami, Y., Matsumura, T., Matsuda, H., Kasho, M. and Shichiri, M. 1997. Beta-very low density lipoprotein induces triglyceride accumulation through receptor mediated endocytotic pathway in 3T3-L1 adipocytes. Atherosclerosis 135, 57-64.   DOI
31 Jeon, Y. S. and Kim, M. W. 2011. The antioxidative effects and isolation and characterization of the extracts from Morus alba L.. Kor. J. Food Nutr. 24, 94-100.   DOI
32 Huang, S. S., Yan, Y. H., Ko, C. H., Chen, K. M., Lee, S. C. and Liu, C. T. 2014. A Comparison of Food-grade Folium mori (Ssng Ye) Extract and 1-Deoxynojirimycin for Glycemic Control and Renal Function in Streptozotocin-induced Diabetic Rats. J. Tradit. Complement Med. 4, 162-170.   DOI