Browse > Article
http://dx.doi.org/10.13103/JFHS.2016.31.2.67

The Role of Resveratrol in Lipid Metabolism: A Systematic Review of Current Basic and Translational Evidence  

Choi, Seung Kug (Laboratory of Metabolic Engineering, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
Moon, Hyun-Seuk (Laboratory of Metabolic Engineering, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
Publication Information
Journal of Food Hygiene and Safety / v.31, no.2, 2016 , pp. 67-73 More about this Journal
Abstract
Resveratrol is a non-flavonoid polyphenol which belongs to the stilbenes group and is naturally generated in several plants in response to damage or fungal invasion. It has been shown in published studies that resveratrol has an anti-adipogenic effect. A good consensus regarding the involvement of a down-regulation of $C/EBP{\alpha}$ and $PPAR{\gamma}$ in this effect has been reached. In addition, different metabolic pathways involved in triacylglycerol metabolism in white adipose tissue have been shown to be regulated by resveratrol. Concerning lipolysis, though this compound in itself seems to be unable to cause lipolysis, it increases lipid mobilization stimulated by ${\beta}-adrenergic$ agents. The increase in brown adipose tissue thermogenesis, and accordingly the associated energy dissipation, can attribute to accounting for the body-fat reducing effect of resveratrol. Besides its effects on adipose tissue, resveratrol can also acts on other organs and tissues. Therefore, it increases mitochondrial biogenesis and accordingly fatty acid oxidation in skeletal muscle and liver. This effect can also attribute to the body-fat reducing effect of this molecule. The present review purposes to collect the evidence concerning the potential mechanisms of action which underlie the anti-obesity effects of resveratrol, acquired either in cultured cells lines and animal models.
Keywords
resveratrol; adipogenesis; lipolysis; thermogenesis; fatty acid oxidation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Chen, S. Li, Z. Li, W. Shan, Z. Zhu, W. Resveratrol inhibits cell differentiation in 3T3-L1 adipocytes via activation of AMPK. Can. J. Physiol. Pharmacol., 89, 793-799 (2011)
2 Rayalam, S. Yang, J.Y. Ambati, S. Della-Fera, M.A. Baile, C.A.: Resveratrol induces apoptosis and inhibits adipogenesis in 3T3-L1 adipocytes. Phytother. Res., 22, 1367-1371 (2008).   DOI
3 Lasa, A. Churruca, I. Eseberri, I. Andrés-Lacueva, C. Portillo, M.P.: Delipidating effect of resveratrol metabolites in 3T3-L1 adipocytes. Mol. Nutr. Food Res., 56, 1559-1568 (2012).   DOI
4 Carpéné, C. Gómez-Zorita, S. Deleruyelle, S. Carpéné, M.A.: Novel strategies for preventing diabetes and obesity complications with natural polyphenols. Curr. Med. Chem., 22, 150-164 (2014).   DOI
5 Fisher-Posovszky, P. Kukulus, V. Tews, D. Unterkircher, T. Debatin, K.M. Fulda, S. Wabitsch, M.: Resveratrol regulates human adipocyte number and function in a Sirt1-dependent manner. Am. J. Clin. Nutr., 92, 5-15 (2010).   DOI
6 Thornberry N.A, Lazebnik, Y : Caspases: Enemies within. Scienc., 281, 1312-1316 (1998).   DOI
7 Ashkenazi A., Salvesen, G.: Regulated Cell Death: Signaling and Mechanisms. Ann. Rev. Cell Dev. Biol., 30, 337-356 (2014).   DOI
8 Salvesen, G.S. Ashkenazi, A. Snapshot : Caspases. Cell., 147, 476-476.e1, doi:10.1016/j.cell.2011.09.030 (2011).   DOI
9 Adams, J.M. Cory, S.: The Bcl-2 protein family: Arbiters of cell survival. Science., 281, 1322-1326 (1998).   DOI
10 Yang, J.Y. Della-Fera, M.A. Rayalam, S. Ambati, S. Hartzell, D.L. Park, H.J. Baile, C.A.: Enhanced inhibition of adipogenesis and induction of apoptosis in 3T3-L1 adipocytes with combinations of resveratrol and quercetin. Life Sci., 82, 1032-1039 (2008).   DOI
11 Rayalam, S. Della-Fera, M.A. Yang, J.Y. Park, H.J. Ambati, S. Baile, C.A.: Resveratrol potentiates genistein's antiadipogenic and proapoptotic effects in 3T3-L1 adipocytes. J. Nutr., 137, 2668-2673 (2007).   DOI
12 Park, H.J. Yang, J.Y. Ambati, S. Della-Fera, M.A. Hausman, D.B. Rayalam, S. Baile, C.A.: Combined effects of genistein, quercetin, and resveratrol in human and 3T3-L1 adipocytes. J. Med Food., 11, 773-783 (2008).   DOI
13 Chen, S. Xiao, X. Feng, X. Li, W. Zhou, N., Zheng, L. Sun, Y. Zhang, Z. Zhu, W.: Resveratrol induces Sirt1-dependent apoptosis in 3T3-L1 preadipocytes by activating AMPK and suppressing AKT activity and survivin expression. J. Nutr. Biochem., 23, 1100-1112 (2012).   DOI
14 Pang, W.J. Xiong, Y. Zhang, Z. Wei, N. Chen, N. Yang, G.S.: Lentivirus-mediated Sirt1 shRNA and resveratrol independently induce porcine preadipocyte apoptosis by canonical apoptotic pathway. Mol. Biol. Rep., 40, 129-139 (2013).   DOI
15 Zimmermann, R. Strauss, J.G. Haemmerle, G. Schoiswohl, G. Birner-Gruenberger, R. Riederer, M. Lass, A. Neuberger, G. Eisenhaber, F. Hermetter, A.: Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science, 306, 1383-1386 (2004).   DOI
16 Lafontan, M. Langin, D.: Lipolysis and lipid mobilization in human adipose tissue. Prog. Lipid Res., 48, 275-297 (2009).   DOI
17 Szkudelska, K. Nogowski, L. Szkudelski, T.: Resveratrol, a naturally occurring diphenolic compound, affects lipogenesis, lipolysis and the antilipolytic action of insulin in isolated rat adipocytes. J. Steroid. Biochem. Mol. Biol., 113, 17-24 (2009).   DOI
18 Picard, F. Guarente, L.: Molecular links between aging and adipose tissue. Int. J. Obes. (Lond.), 29, S36-S39 (2005).   DOI
19 Picard, F. Kurtev, M. Chung, N. Topark-Ngarm, A. Senawong, T. Machado de Oliveira, R. Leid, M. McBurney, M.W. Guarente, L.: Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature, 429, 771-776 (2004).   DOI
20 Shan, T. Ren, Y. Wang, Y.: Sirtuin 1 affects the transcriptional expression of adipose triglyceride lipase in porcine adipocytes. J. Anim. Sci., 91, 1247-1254 (2013).   DOI
21 Lasa, A. Schweiger, M. Kotzbeck, P. Churruca, I. Simón, E. Zechner, R. Portillo, M.P.: Resveratrol regulates lipolysis via adipose triglyceride lipase. J. Nutr. Biochem., 23, 379-384 (2012).   DOI
22 Rosenow, A. Noben, J.P. Jocken, J. Kallendrusch, S. Fischer-Posovszky, P. Mariman, E.C.: Renes, J. Resveratrol-induced changes of the human adipocyte secretion profile. J. Proteome Res., 11, 4733-4743 (2012).   DOI
23 Pedersen, S.B. Olholm, J. Paulsen, S.K. Bennetzen, M.F. Richelsen, B.: Low Sirt1 expression, which is upregulated by fasting, in human adipose tissue from obese women. Int. J. Obes. (Lond.), 32, 1250-1255 (2008).   DOI
24 Gomez-Zorita, S. Treguer, K. Mercader, J. Carpene, C.: Resveratrol directly affects in vitro lipolysis and glucose transport in human fat cells. J. Physiol Biochem., 69, 585-593 (2013).   DOI
25 Alberdi, G. Rodríguez, V.M. Miranda, J. Macarulla, M.T. Arias, N. Andrés-Lacueva, C. Portillo, M.P.: Changes in white adipose tissue metabolism induced by resveratrol in rats. Nutr. Metab. (Lond.)., 8, 29-35 (2011).   DOI
26 Gomez-Zorita, S. Fernandez-Quintela, A. Lasa, A. Hijona, E. Bujanda, L. Portillo, M.P.: Effects of resveratrol on obesity- related inflammation markers in adipose tissue of genetically obese rats. Nutrition., 29, 1374-1380 (2013).   DOI
27 Lowell, B.B. Spiegelman, B.M.: Towards a molecular understanding of adaptive thermogenesis. Nature, 404, 652-660 (2000).   DOI
28 Barger, J.L. Kayo, T. Vann, J.M. Arias, E.B. Wang, J. Hacker, T.A. Wang, Y. Raederstorff, D. Morrow, J.D. Leeuwenburgh, C.: A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS One, 3, e2264 (2008).   DOI
29 Ricquier, D. Casteilla, L.: Bouillaud, F. Molecular studies of the uncoupling protein. FASEB J., 5, 2237-2242 (1991).   DOI
30 Alberdi, G. Rodríguez, V.M. Miranda, J. Macarulla, M.T. Churruca, I. Portillo, M.P.: Thermogenesis is involved in the body-fat lowering effects of resveratrol in rats. Food Chem., 141, 1530-1535 (2013).   DOI
31 Lagouge, M. Argmann, C. Gerhart-Hines, Z. Meziane, H. Lerin, C. Daussin, F. Messadeq, N. Milne, J. Lambert, P. Elliott, P.: Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell, 127, 1109-1122 (2006).   DOI
32 Oliveira, J.M. Montes, A.C. Bohnen, J. Freitas, K.M. Paz, M.T. Sena, A.L. Batista de Paula, A.M. Coimbra, C.C. Sousa, S.H.: Resveratrol increases brown adipose tissue thermogenesis markers by increasing SIRT1 and energy expenditure and decreasing fat accumulation in adipose tissue of mice fed a standard diet. Eur. J. Nutr., 53, 1503-1510 (2014).   DOI
33 Galgani, J. Ravussin, E.: Energy metabolism, fuel selection and body weight regulation. Int. J. Obes. (Lond.), 32, S109-S119 (2008).   DOI
34 Isken, F. Klaus, S. Petzke, K.J. Loddenkemper, C. Pfeiffer, A.F. Weickert, M.O.: Impairment of fat oxidation under high- vs. low-glycemic index diet occurs before the development of an obese phenotype. Am. J. Physiol. Endocrinol. Metab., 298, E287-E295 (2010).   DOI
35 Eaton, S. Bartlett, K. Pourfarzam, M.: Mammalian mitochondrial beta-oxidation. Biochem. J., 320, 345-357 (1996).   DOI
36 Ahn, J. Cho, I. Kim, S. Kwon, D. Ha, T.: Dietary resveratrol alters lipid metabolism-related gene expression of mice on an atherogenic diet. J. Hepatol., 49, 1019-1028 (2008).   DOI
37 Kerner, J. Hoppel, C.: Fatty acid import into mitochondria. Biochim. Biophys. Acta, 1486, 1-17 (2000).   DOI
38 Duplus, E. Forest, C.: Is there a single mechanism for fatty acid regulation of gene transcription? Biochem. Pharmacol., 64, 893-901 (2002).   DOI
39 Alberdi, G. Rodríguez, V.M. Macarulla, M.T. Miranda, J. Churruca, I. Portillo, M.P.: Hepatic lipid metabolic pathways modified by resveratrol in rats fed an obesogenic diet. Nutrition, 29, 562-567 (2013).   DOI
40 Leiherer, A. Mündlein, A. Drexel, H.: Phytochemicals and their impact on adipose tissue inflammation and diabetes. Vascul. Pharmacol. 58, 3-20 (2013).   DOI
41 Burns, J. Yokota, T. Ashihara, H. Lean, M.E. Crozier, A. Plant foods and herbal sources of resveratrol.: J. Agric. Food Chem., 50, 3337-3340 (2002).   DOI
42 Borriello, A. Cucciolla, V. Della Ragione, F. Galletti, P.: Dietary polyphenols: Focus on resveratrol, a promising agent in the prevention of cardiovascular diseases and control of glucose homeostasis. Nutr. Metab. Cardiovasc. Dis., 20, 618-625 (2010).   DOI
43 Wenzel, E. Somoza, V.: Metabolism and bioavailability of trans-resveratrol. Mol. Nutr. Food Res., 49, 472-481 (2005).   DOI
44 Walle, T. Hsieh, F. DeLegge, M.H. Oatis, J.E. Walle, U.K.: High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos., 32, 1377-1382 (2004).   DOI
45 Baur, J.A. Pearson, K.J. Price, N.L. Jamieson, H.A. Lerin, C. Kalra, A. Prabhu, V.V. Allard, J.S. Lopez-Lluch, G. Lewis, K.: Resveratrol improves health and survival of mice on a high-calorie diet. Nature, 444, 337-342 (2006).   DOI
46 Timmers, S. Konings, E. Bilet, L. Houtkooper, R.H. van de Weijer, T. Goossens, G.H. Hoeks, J. van der Krieken, S. Ryu, D. Kersten.: Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab., 14, 612-622 (2011).   DOI
47 Espín, J.C. García-Conesa, M.T. Tomás-Barberán, F.A.: Nutraceuticals: Facts and fiction. Phytochemistry, 68, 2986-3008 (2007).   DOI
48 Szkudelska, K. Szkudelski, T.: Resveratrol, obesity and diabetes. Eur. J. Pharmacol., 635, 1-8 (2010).   DOI
49 Szkudelski, T. Szkudelska, K.: Anti-diabetic effects of resveratrol. Ann. N. Y. Acad. Sci., 1215, 34-39 (2011).   DOI
50 Meydani, M. Hasan, S.T.: Dietary polyphenols and obesity. Nutrients, 2, 737-751 (2010).   DOI
51 Catalan, V. Gomez-Ambrosi, J. Rodriguez, A. Frühbeck, G.: Role of extracellular matrix remodelling in adipose tissue pathophysiology: Relevance in the development of obesity. Histol. Histopathol., 27, 1515-1522 (2012).
52 Rosen, E.D. MacDougald, O.A.: Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell Biol., 7, 885-896 (2006).   DOI
53 Gregoire, F.M. Smas, C.M. Sul, H.S.: Understanding adipocyte differentiation. Physiol. Rev., 78, 783-809 (1998).   DOI
54 Farmer, S.R.: Transcriptional control of adipocyte formation. Cell Metab., 4, 263-273 (2006).   DOI
55 Kwon, J.Y. Seo, S.G. Yue, S Cheng, J.X. Lee, K.W. Kim, K.H.: An inhibitory effect of resveratrol in the mitotic clonal expansion and insulin signaling pathway in the early phase of adipogenesis. Nutr. Res., 32, 607-616 (2012).   DOI