• Title/Summary/Keyword: Bulk silicon

Search Result 264, Processing Time 0.033 seconds

Electrical Characteristics of Oxide Layer Due to High Temperature Diffusion Process (고온 확산공정에 따른 산화막의 전기적 특성)

  • 홍능표;홍진웅
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.10
    • /
    • pp.451-457
    • /
    • 2003
  • The silicon wafer is stable status at room temperature, but it is weak at high temperatures which is necessary for it to be fabricated into a power semiconductor device. During thermal diffusion processing, a high temperature produces a variety thermal stress to the wafer, resulting in device failure mode which can cause unwanted oxide charge or some defect. This disrupts the silicon crystal structure and permanently degrades the electrical and physical characteristics of the wafer. In this paper, the electrical characteristics of a single oxide layer due to high temperature diffusion process, wafer resistivity and thickness of polyback was researched. The oxide quality was examined through capacitance-voltage characteristics, defect density and BMD(Bulk Micro Defect) density. It will describe the capacitance-voltage characteristics of the single oxide layer by semiconductor process and device simulation.

Monolithic film Bulk Acoustic Wave Resonator using SOI Wafer (SOI 웨이퍼를 이용한 압전박막공진기 제작)

  • 김인태;김남수;박윤권;이시형;이전국;주병권;이윤희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.12
    • /
    • pp.1039-1044
    • /
    • 2002
  • Film Bulk Acoustic Resonator (FBAR) using thin piezoelectric films can be made as monolithic integrated devices with compatibility to semiconductor process, leading to small size, low cost and high Q RF circuit elements with wide applications in communications area. This paper presents an MMIC compatible suspended FBAR using SOI micromachining. It is possible to make a single crystal silicon membrane using a SOI wafer In fabricating active devices, SOI wafer offers advantage which removes the substrate loss. FBAR was made on the 12㎛ silicon membrane. Electrode and Piezoelectric materials were deposited by RF magnetron sputter. The maximum resonance frequency of FBAR was shown at 2.5GHz range. The reflection loss, K$^2$$\_$eff/, Q$\_$serise/ and Q$\_$parallel/ in that frequency were 1.5dB, 2.29%, 220 and 160, respectively.

Delayed auger recombination in silicon measured by time-resolved X-ray scattering

  • Jo, Wonhyuk;Landahl, Eric C.;Kim, Seongheun;Lee, Dong Ryeol;Lee, Sooheyong
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1230-1234
    • /
    • 2018
  • We report a new method of measuring the non-radiative recombination rate in bulk Silicon. Synchrotron timeresolved x-ray scattering (TRXS) combines femtometer spatial sensitivity with nanosecond time resolution to record the temporal evolution of a crystal lattice following intense ultrafast laser excitation. Modeling this data requires an Auger recombination time that is considerably slower than previous measurements, which were made at lower laser intensities while probing only a relatively shallow surface depth. We attribute this difference to an enhanced Coulomb interaction that has been predicted to occur in bulk materials with high densities of photoexcited charge carriers.

Hydrogen Absorption by Crystalline Semiconductors: Si(100), (110) and (111)

  • Jeong, Min-Bok;Jo, Sam-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.383-383
    • /
    • 2010
  • Gas-phase hydrogen atoms create a variety of chemical and physical phenomena on Si surfaces: adsorption, abstraction of pre-adsorbed H, Si etching, Si amorphization, and penetration into the bulk lattice. Thermal desorption/evolution analyses exhibited three distinct peaks, including one from the crystalline bulk. It was previously found that thermal-energy gaseous H(g) atoms penetrate into the Si(100) crystalline bulk within a narrow substrate temperature window(centered at ~460K) and remain trapped in the bulk lattice before evolving out at a temperature as high as ~900K. Developing and sustaining atomic-scale surface roughness, by H-induced silicon etching, is a prerequisite for H absorption and determines the $T_s$ windows. Issues on the H(g) absorption to be further clarified are: (1) the role of the detailed atomic surface structure, together with other experimental conditions, (2) the particular physical lattice sites occupied by, and (3) the chemical nature of, absorbed H(g) atoms. This work has investigated and compared the thermal H(g) atom absorptivity of Si(100), Si(111) and Si(110) samples in detail by using the temperature programmed desorption mass spectrometry (TPD-MS). Due to the differences in the atomic structures of, and in the facility of creating atom-scale etch pits on, Si(100), (100) and (110) surfaces, the H-absorption efficiency was found to be larger in the order of Si(100) > Si(111) > Si(110) with a relative ratio of 1 : 0.22 : 0.045. This intriguing result was interpreted in terms of the atomic-scale surface roughening and kinetic competition among H(g) adsorption, H(a)-by-H(g) abstraction, $SiH_3(a)$-by-H(g) etching, and H(g) penetraion into the crystalline silicon bulk.

  • PDF

Effects of Fabrication Variables and Microstructures on the Compressive Strength of Open Cell Ceramics (개방셀 세라믹스의 압축강도에 대한 제조공정변수 및 미세구조의 영향)

  • 정한남;현상훈
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.9
    • /
    • pp.954-964
    • /
    • 1999
  • The effect of fabrication variables and microstructures on the compressive strength of open cell alumina zirconia and silicon nitride ceramics fabricated by polymeric sponge method was investigated. Bulk density and compressive strength of open cell ceramics were mainly affected by coating characteristics of ceramic slurry on polymeric sponge that controlled a shape thickness and defect of the struts. Sintering temperature was optimized for enhancement of strut strength and compressive strength of open cell ceramics. Relative density and compressive strength behaviors were relatively well matched with the predicted values. Open cell ceramics of lower relative density below 0.1 prepared by first relatively well matched with the predicted values. Open cell ceramics of lower relative density below 0.1 prepared by first coating of ceramic slurry had thin triangular prismatic struts that were often broken or longitudinally cracked. With an application of second coating of slurry shape of struts was transformed into thickner cylindrical one and defects in struts were healed but the relative density increased over 0.2 Open cell zirconia had both the highest bulk density and compressive strength and alumina had the lowest compressive strength while silicon nitrides showed relatively high compressive strength and the lowest density. Based upon the analysis open cell silicon nitride was expected to be one of potential structural ceramics with light weight.

  • PDF

An Amorphous Silicon Local Interconnection (ASLI) CMOS with Self-Aligned Source/Drain and Its Electrical Characteristics

  • Yoon, Yong-Sun;Baek, Kyu-Ha;Park, Jong-Moon;Nam, Kee-Soo
    • ETRI Journal
    • /
    • v.19 no.4
    • /
    • pp.402-413
    • /
    • 1997
  • A CMOS device which has an extended heavily-doped amorphous silicon source/drain layer on the field oxide and an amorphous silicon local interconnection (ASLI) layer in the self-aligned source/drain region has been studied. The ASLI layer has some important roles of the local interconnections from the extended source/drain to the bulk source/drain and the path of the dopant diffusion sources to the bulk. The junction depth and the area of the source/drain can be controlled easily by the ASLI layer thickness. The device in this paper not only has very small area of source/drain junctions, but has very shallow junction depths than those of the conventional CMOS device. An operating speed, however, is enhanced significantly compared with the conventional ones, because the junction capacitance of the source/drain is reduced remarkably due to the very small area of source/drain junctions. For a 71-stage unloaded CMOS ring oscillator, 128 ps/gate has been obtained at power supply voltage of 3.3V. Utilizing this proposed structure, a buried channel PMOS device for the deep submicron regime, known to be difficult to implement, can be fabricated easily.

  • PDF

Dynamics of Gas-phase Hydrogen Atom Reaction with Chemisorbed Hydrogen Atoms on a Silicon Surface

  • 임선희;이종백;김유항
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.10
    • /
    • pp.1136-1144
    • /
    • 1999
  • The collision-induced reaction of gas-phase atomic hydrogen with hydrogen atoms chemisorbed on a silicon (001)-(2×1) surface is studied by use of the classical trajectory approach. The model is based on reaction zone atoms interacting with a finite number of primary system silicon atoms, which then are coupled to the heat bath, i.e., the bulk solid phase. The potential energy of the Hads‥Hgas interaction is the primary driver of the reaction, and in all reactive collisions, there is an efficient flow of energy from this interaction to the Hads-Si bond. All reactive events occur on a subpicosecond scale, following the Eley-Rideal mechanism. These events occur in a localized region around the adatom site on the surface. The reaction probability shows the maximum near 700K as the gas temperature increases, but it is nearly independent of the surface temperature up to 700 K. Over the surface temperature range of 0-700 K and gas temperature range of 300 to 2500 K, the reaction probability lies at about 0.1. The reaction energy available for the product states is small, and most of this energy is carried away by the desorbing H2 in its translational and vibrational motions. The Langevin equation is used to consider energy exchange between the reaction zone and the bulk solid phase.

The Effects of high Energy(1.5MeV) B+ ion Implantation and Initial Oxygen Concentration Upon Deep Level in CZ Silicon Wafer (고 에너지 (1.5 MeV) Boron 이온 주입과 초기 산소농도 조건이 깊은 준위에 미치는 영향에 관한 연구)

  • Song, Yeong-Min;Mun, Yeong-Hui;Kim, Jong-O
    • Korean Journal of Materials Research
    • /
    • v.11 no.1
    • /
    • pp.55-60
    • /
    • 2001
  • The effect of high energy B ion implantation and initial oxygen concentration upon defect formation and gettering of metallic impurities in Czochralski silicon wafer has been studied by applying DLTS( Deep Level Transient Spectroscopy), SIMS(Secondary ton Mass Spectroscopy), BMD (Bulk Micro-Defect) analysis and TEM(Transmission Electron Microscopy). DLTS results show the signal of the deep levels not only in as-implanted samples but also in low and high temperature annealed samples. Vacancy-related deep levels in as- implanted samples were changed to metallic impurities-related deep levels with increase of annealing temperature. In the case of high temperature anneal, by showing the lower deep level concentration with increase of initial oxygen concentration, high initial oxygen concentration seems to be more effective compared with the lower initial oxygen one.

  • PDF

Flexural Strength of Polysiloxane-Derived Strontium-Doped SiOC Ceramics

  • Eom, Jung-Hye;Kim, Young-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.1
    • /
    • pp.61-65
    • /
    • 2015
  • The effect of Sr addition on the flexural strength of bulk SiOC ceramics was investigated in polymer-derived SiOC ceramics prepared by conventional hot pressing. Crack-free, dense SiOC discs with a 30 mm diameter were successfully fabricated from commercially available polysiloxane with 1 mol% strontium isopropoxide derived Sr as an additive. Agglomerates formed after the pyrolysis of polysiloxane led to the formation of domain-like structures. The flexural strength of bulk SiOC was strongly dependent on the domain size formed and Sr addition. Both the minimization of the agglomerate size in the starting powders by milling after pyrolysis and the addition of Sr, which reinforces the SiOC structure, are efficient ways to improve the flexural strength of bulk SiOC ceramics. The typical flexural strength of bulk Sr-doped SiOC ceramics fabricated from submicron-sized SiOC powders was ~209 MPa.