Browse > Article
http://dx.doi.org/10.1016/j.cap.2018.05.013

Delayed auger recombination in silicon measured by time-resolved X-ray scattering  

Jo, Wonhyuk (Korea Research Institute of Standards and Science (KRISS))
Landahl, Eric C. (Department of Physics, DePaul University)
Kim, Seongheun (Pohang Accelerator Laboratory)
Lee, Dong Ryeol (Department of Physics, Soongsil University)
Lee, Sooheyong (Korea Research Institute of Standards and Science (KRISS))
Abstract
We report a new method of measuring the non-radiative recombination rate in bulk Silicon. Synchrotron timeresolved x-ray scattering (TRXS) combines femtometer spatial sensitivity with nanosecond time resolution to record the temporal evolution of a crystal lattice following intense ultrafast laser excitation. Modeling this data requires an Auger recombination time that is considerably slower than previous measurements, which were made at lower laser intensities while probing only a relatively shallow surface depth. We attribute this difference to an enhanced Coulomb interaction that has been predicted to occur in bulk materials with high densities of photoexcited charge carriers.
Keywords
Carrier lifetime; Auger recombination; Time-resolved x-ray scattering;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Schroder, Carrier lifetimes in silicon, IEEE Trans. Electron. Dev. 44 (1997) 160-170.   DOI
2 M.C. Downer, C.V. Shank, Ultrafast heating of silicon on sapphire by femtosecond optical pulses, Phys. Rev. Lett. 56 (1986) 761-764.   DOI
3 R. Conradt, J. Aengenheister, Minority Carrier lifetime in highly doped Ge, Solid State Commun. 10 (1972) 321-323.   DOI
4 K. Svantesson, N. Nilsson, L. Huldt, Recombination in strongly excited silicon, Solid State Commun. 9 (1971) 213-216.   DOI
5 H.M. Van Driel, Kinetics of high-density plasmas generated in Si by 1.06- and 0.53- m picosecond laser pulses, Phys. Rev. B 35 (1987) 8166-8176.   DOI
6 N. Nilsson, K. Svantesson, The spectrum and decay of the recombination radiation from strongly excited silicon, Solid State Commun. 11 (1972) 155-159.   DOI
7 J. Dziewior, W. Schmid, Auger coefficients for highly doped and highly excited silicon, Appl. Phys. Lett. 31 (1977) 346-348.   DOI
8 J. Piprek, Efficiency droop in nitride-based light-emitting diodes, Physica Status Solidi A 207 (2010) 2217-2225.   DOI
9 K.W. Williams, N.R. Monahan, T.J. Evans, X.-Y. Zhu, Direct time-domain view of auger recombination in a semiconductor, Phys. Rev. Lett. 118 (2017) 087402.   DOI
10 G. Verzellesi, D. Saguatti, M. Meneghini, F. Bertazzi, M. Goano, G. Meneghesso, E. Zanoni, Efficiency droop in InGaN/GaN blue light-emitting diodes: physical mechanisms and remedies, J. Appl. Phys. 114 (2013) 071101.   DOI
11 P. Jonsson, H. Bleichner, M. Isberg, E. Nordlander, The ambipolar auger coefficient: measured temperature dependence in electron irradiated and highly injected n-type silicon, J. Appl. Phys. 81 (1997) 2256-2262.   DOI
12 E. Yablonovitch, D.L. Allara, C.C. Chang, T. Gmitter, T.B. Bright, Unusually low surface-recombination velocity on silicon and germanium surfaces, Phys. Rev. Lett. 57 (1986) 249-252.   DOI
13 L. Wang, R. Cheaito, J.L. Braun, A. Giri, P.E. Hopkins, Thermal conductivity measurements of non-metals via combined time- and frequency-domain thermoreflectance without a metal film transducer, Rev. Sci. Instrum. 87 (2016) 094902.   DOI
14 M. Govoni, I. Marri, S. Ossicini, Auger recombination in Si and GaAs semiconductors: ab initio results, Phys. Rev. B 84 (2011) 075215.   DOI
15 A. Hangleiter, R. Hacker, Enhancement of band-to-band Auger recombination by electron-hole correlations, Phys. Rev. Lett. 65 (1990) 215-218.   DOI
16 A. Haug, W. Ekardt, The influence of screening effects on the Auger recombination in semiconductors, Solid State Commun. 17 (1975) 267-268.   DOI
17 M. Choi, J.-c. Kim, D.-w. Kim, Waste windshield-derived silicon/carbon nanocomposites as high- performance lithium-ion battery anodes, Sci. Rep. (2018) 1-12.
18 Y.H. Dahl-Young Khang, Hanqing Jiang, A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates, Science 311 (2006) 208-212.   DOI
19 D. Liang, J.E. Bowers, Recent progress in lasers on silicon, Nat. Photon. 4 (2010) 511-517.   DOI
20 R. Agnese, et al., Silicon detector dark matter results from the final exposure of CDMS ii, Phys. Rev. Lett. 111 (2013) 251301.   DOI
21 S.T. Walsh, R.L. Boylan, C. McDermott, A. Paulson, The semiconductor silicon industry roadmap: epochs driven by the dynamics between disruptive technologies and core competencies, Technol. Forecast. Soc. Change 72 (2005) 213-236.   DOI
22 F. Balestra, S. Cristoloveanu, M. Benachir, J. Brini, T. Elewa, Double-gate silicon-oninsulator transistor with volume inversion: a new device with greatly enhanced performance, IEEE Electron. Device Lett. 8 (1987) 410-412.   DOI
23 J. Oh, H.-C. Yuan, H.M. Branz, An 18.2%-efficient black-silicon solar cell achieved through control of Carrier recombination in nanostructures, Nat. Nanotechnol. 7 (2012) 743-748.   DOI
24 K. Graff, H. Fischer, Carrier lifetime in silicon and its impact on solar cell characteristics, Solar Cells, 1979, pp. 173-211.
25 B. Ohnesorge, R. Weigand, G. Bacher, A. Forchel, W. Riedl, F.H. Karg, Minority-Carrier lifetime and efficiency of Cu(In,Ga)Se2 solar cells, Appl. Phys. Lett. 73 (1998) 1224-1226.   DOI
26 J. Peet, J.Y. Kim, N.E. Coates, W.L. Ma, D. Moses, A.J. Heeger, G.C. Bazan, Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols, Nat. Mater. 6 (2007) 497-500.   DOI
27 G.J. Williams, S. Lee, D.A. Walko, M.A. Watson, W. Jo, D.R. Lee, E.C. Landahl, Direct measurements of multi-photon induced nonlinear lattice dynamics in semiconductors via time-resolved x-ray scattering, Sci. Rep. 6 (2016) 39506.   DOI
28 L. Huldt, Band-to-band auger recombination in indirect gap semiconductors, Physica Status Solidi (a) 8 (1971) 173-187.   DOI
29 S. Lee, G.J. Williams, M.I. Campana, D.A. Walko, E.C. Landahl, Picosecond x-ray strain rosette reveals direct laser excitation of coherent transverse acoustic phonons, Sci. Rep. 6 (2016) 19140.   DOI
30 S.H. Lee, A.L. Cavalieri, D.M. Fritz, M.C. Swan, R.S. Hegde, M. Reason, R.S. Goldman, D.A. Reis, Generation and propagation of a picosecond acoustic pulse at a buried interface: time-resolved x-ray diffraction measurements, Phys. Rev. Lett. 95 (2005) 246104.   DOI
31 C.R. Wie, T.A. Tombrello, T. Vreeland, Dynamical xray diffraction from nonuniform crystalline films: application to xray rocking curve analysis, J. Appl. Phys. 59 (1986) 3743-3746.   DOI
32 W. Jo, I. Eom, E.C. Landahl, S. Lee, C.-J. Yu, Demonstration of a time-resolved x-ray scattering instrument utilizing the full-repetition rate of x-ray pulses at the Pohang Light Source, Rev. Sci. Instrum. 87 (2016) 035107.   DOI
33 W. Paul, D. Warschauer, Optical properties of semiconductors under hydrostatic pressureii. silicon, J. Phys. Chem. Solid. 5 (1958) 102-106.   DOI
34 K.L. Luke, L. Cheng, Analysis of the interaction of a laser pulse with a silicon wafer: determination of bulk lifetime and surface recombination velocity, J. Appl. Phys. 61 (1987) 2282-2293.   DOI
35 M.J. Kerr, A. Cuevas, General parameterization of Auger recombination in crystalline silicon, J. Appl. Phys. 91 (2002) 2473-2480.   DOI
36 Y. Hayashi, Y. Tanaka, T. Kirimura, N. Tsukuda, E. Kuramoto, T. Ishikawa, Acoustic pulse echoes probed with time-resolved x-ray triple-crystal diffractometry, Phys. Rev. Lett. 96 (2006) 115505.   DOI
37 C.G. Van de Walle, Band lineups and deformation potentials in the model-solid theory, Phys. Rev. B 39 (1989) 1871-1883.   DOI
38 C. Xu, C.L. Senaratne, J. Kouvetakis, J. Menendez, Experimental doping dependence of the lattice parameter in n -type Ge: identifying the correct theoretical framework by comparison with Si, Phys. Rev. B 93 (2016) 1-5.
39 A. Richter, S.W. Glunz, F. Werner, J. Schmidt, A. Cuevas, Improved quantitative description of Auger recombination in crystalline silicon, Phys. Rev. B 86 (2012) 165202.   DOI
40 H. Hu, M. Liu, Z.F. Wang, J. Zhu, D. Wu, H. Ding, Z. Liu, F. Liu, Quantum electronic stress: density-functional-theory formulation and physical manifestation, Phys. Rev. Lett. 109 (2012) 055501.   DOI
41 A. Ramer, O. Osmani, B. Rethfeld, Laser damage in silicon: energy absorption, relaxation, and transport, J. Appl. Phys. 116 (2014) 053508.   DOI
42 S.K. Sundaram, E. Mazur, Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses, Nat. Mater. 1 (2002) 217-224.   DOI
43 M.F. DeCamp, D.A. Reis, A. Cavalieri, P.H. Bucksbaum, R. Clarke, R. Merlin, E.M. Dufresne, D.A. Arms, A.M. Lindenberg, A.G. MacPhee, Z. Chang, B. Lings, J.S. Wark, S. Fahy, Transient strain driven by a dense electron-hole plasma, Phys. Rev. Lett. 91 (2003) 165502.   DOI
44 J. Dorkel, P. Leturcq, Carrier mobilities in silicon semi-empirically related to temperature, doping and injection level, Solid State Electron. 24 (1981) 821-825.   DOI
45 D. Klaassen, A unified mobility model for device simulationI. Model equations and concentration dependence, Solid State Electron. 35 (1992) 953-959.   DOI
46 A. Mouskeftaras, M. Chanal, M. Chambonneau, R. Clady, O. Utéza, D. Grojo, Direct measurement of ambipolar diffusion in bulk silicon by ultrafast infrared imaging of laser-induced microplasmas, Appl. Phys. Lett. 108 (2016) 041107.   DOI
47 A. Bayliss, Numerical Solution of Partial Differential Equations: Theory, Tools and Case Studies, volume 66 of International Series of Numerical Mathematics/ Internationale Schriftenreihe zur Numerischen Mathematik/Série internationale d'Analyse numerique, Birkhauser Basel, Basel, 1983.