DOI QR코드

DOI QR Code

Delayed auger recombination in silicon measured by time-resolved X-ray scattering

  • Jo, Wonhyuk (Korea Research Institute of Standards and Science (KRISS)) ;
  • Landahl, Eric C. (Department of Physics, DePaul University) ;
  • Kim, Seongheun (Pohang Accelerator Laboratory) ;
  • Lee, Dong Ryeol (Department of Physics, Soongsil University) ;
  • Lee, Sooheyong (Korea Research Institute of Standards and Science (KRISS))
  • Received : 2018.03.09
  • Accepted : 2018.05.10
  • Published : 2018.11.30

Abstract

We report a new method of measuring the non-radiative recombination rate in bulk Silicon. Synchrotron timeresolved x-ray scattering (TRXS) combines femtometer spatial sensitivity with nanosecond time resolution to record the temporal evolution of a crystal lattice following intense ultrafast laser excitation. Modeling this data requires an Auger recombination time that is considerably slower than previous measurements, which were made at lower laser intensities while probing only a relatively shallow surface depth. We attribute this difference to an enhanced Coulomb interaction that has been predicted to occur in bulk materials with high densities of photoexcited charge carriers.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. Y.H. Dahl-Young Khang, Hanqing Jiang, A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates, Science 311 (2006) 208-212. https://doi.org/10.1126/science.1121401
  2. D. Liang, J.E. Bowers, Recent progress in lasers on silicon, Nat. Photon. 4 (2010) 511-517. https://doi.org/10.1038/nphoton.2010.167
  3. R. Agnese, et al., Silicon detector dark matter results from the final exposure of CDMS ii, Phys. Rev. Lett. 111 (2013) 251301. https://doi.org/10.1103/PhysRevLett.111.251301
  4. M. Choi, J.-c. Kim, D.-w. Kim, Waste windshield-derived silicon/carbon nanocomposites as high- performance lithium-ion battery anodes, Sci. Rep. (2018) 1-12.
  5. S.T. Walsh, R.L. Boylan, C. McDermott, A. Paulson, The semiconductor silicon industry roadmap: epochs driven by the dynamics between disruptive technologies and core competencies, Technol. Forecast. Soc. Change 72 (2005) 213-236. https://doi.org/10.1016/S0040-1625(03)00066-0
  6. F. Balestra, S. Cristoloveanu, M. Benachir, J. Brini, T. Elewa, Double-gate silicon-oninsulator transistor with volume inversion: a new device with greatly enhanced performance, IEEE Electron. Device Lett. 8 (1987) 410-412. https://doi.org/10.1109/EDL.1987.26677
  7. K. Graff, H. Fischer, Carrier lifetime in silicon and its impact on solar cell characteristics, Solar Cells, 1979, pp. 173-211.
  8. B. Ohnesorge, R. Weigand, G. Bacher, A. Forchel, W. Riedl, F.H. Karg, Minority-Carrier lifetime and efficiency of Cu(In,Ga)Se2 solar cells, Appl. Phys. Lett. 73 (1998) 1224-1226. https://doi.org/10.1063/1.122134
  9. J. Peet, J.Y. Kim, N.E. Coates, W.L. Ma, D. Moses, A.J. Heeger, G.C. Bazan, Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols, Nat. Mater. 6 (2007) 497-500. https://doi.org/10.1038/nmat1928
  10. J. Oh, H.-C. Yuan, H.M. Branz, An 18.2%-efficient black-silicon solar cell achieved through control of Carrier recombination in nanostructures, Nat. Nanotechnol. 7 (2012) 743-748. https://doi.org/10.1038/nnano.2012.166
  11. D. Schroder, Carrier lifetimes in silicon, IEEE Trans. Electron. Dev. 44 (1997) 160-170. https://doi.org/10.1109/16.554806
  12. M.C. Downer, C.V. Shank, Ultrafast heating of silicon on sapphire by femtosecond optical pulses, Phys. Rev. Lett. 56 (1986) 761-764. https://doi.org/10.1103/PhysRevLett.56.761
  13. R. Conradt, J. Aengenheister, Minority Carrier lifetime in highly doped Ge, Solid State Commun. 10 (1972) 321-323. https://doi.org/10.1016/0038-1098(72)90016-6
  14. K. Svantesson, N. Nilsson, L. Huldt, Recombination in strongly excited silicon, Solid State Commun. 9 (1971) 213-216. https://doi.org/10.1016/0038-1098(71)90120-7
  15. H.M. Van Driel, Kinetics of high-density plasmas generated in Si by 1.06- and 0.53- m picosecond laser pulses, Phys. Rev. B 35 (1987) 8166-8176. https://doi.org/10.1103/PhysRevB.35.8166
  16. N. Nilsson, K. Svantesson, The spectrum and decay of the recombination radiation from strongly excited silicon, Solid State Commun. 11 (1972) 155-159. https://doi.org/10.1016/0038-1098(72)91151-9
  17. J. Piprek, Efficiency droop in nitride-based light-emitting diodes, Physica Status Solidi A 207 (2010) 2217-2225. https://doi.org/10.1002/pssa.201026149
  18. K.W. Williams, N.R. Monahan, T.J. Evans, X.-Y. Zhu, Direct time-domain view of auger recombination in a semiconductor, Phys. Rev. Lett. 118 (2017) 087402. https://doi.org/10.1103/PhysRevLett.118.087402
  19. G. Verzellesi, D. Saguatti, M. Meneghini, F. Bertazzi, M. Goano, G. Meneghesso, E. Zanoni, Efficiency droop in InGaN/GaN blue light-emitting diodes: physical mechanisms and remedies, J. Appl. Phys. 114 (2013) 071101. https://doi.org/10.1063/1.4816434
  20. J. Dziewior, W. Schmid, Auger coefficients for highly doped and highly excited silicon, Appl. Phys. Lett. 31 (1977) 346-348. https://doi.org/10.1063/1.89694
  21. P. Jonsson, H. Bleichner, M. Isberg, E. Nordlander, The ambipolar auger coefficient: measured temperature dependence in electron irradiated and highly injected n-type silicon, J. Appl. Phys. 81 (1997) 2256-2262. https://doi.org/10.1063/1.364277
  22. E. Yablonovitch, D.L. Allara, C.C. Chang, T. Gmitter, T.B. Bright, Unusually low surface-recombination velocity on silicon and germanium surfaces, Phys. Rev. Lett. 57 (1986) 249-252. https://doi.org/10.1103/PhysRevLett.57.249
  23. L. Wang, R. Cheaito, J.L. Braun, A. Giri, P.E. Hopkins, Thermal conductivity measurements of non-metals via combined time- and frequency-domain thermoreflectance without a metal film transducer, Rev. Sci. Instrum. 87 (2016) 094902. https://doi.org/10.1063/1.4962711
  24. M. Govoni, I. Marri, S. Ossicini, Auger recombination in Si and GaAs semiconductors: ab initio results, Phys. Rev. B 84 (2011) 075215. https://doi.org/10.1103/PhysRevB.84.075215
  25. A. Hangleiter, R. Hacker, Enhancement of band-to-band Auger recombination by electron-hole correlations, Phys. Rev. Lett. 65 (1990) 215-218. https://doi.org/10.1103/PhysRevLett.65.215
  26. A. Haug, W. Ekardt, The influence of screening effects on the Auger recombination in semiconductors, Solid State Commun. 17 (1975) 267-268. https://doi.org/10.1016/0038-1098(75)90290-2
  27. L. Huldt, Band-to-band auger recombination in indirect gap semiconductors, Physica Status Solidi (a) 8 (1971) 173-187. https://doi.org/10.1002/pssa.2210080118
  28. S. Lee, G.J. Williams, M.I. Campana, D.A. Walko, E.C. Landahl, Picosecond x-ray strain rosette reveals direct laser excitation of coherent transverse acoustic phonons, Sci. Rep. 6 (2016) 19140. https://doi.org/10.1038/srep19140
  29. S.H. Lee, A.L. Cavalieri, D.M. Fritz, M.C. Swan, R.S. Hegde, M. Reason, R.S. Goldman, D.A. Reis, Generation and propagation of a picosecond acoustic pulse at a buried interface: time-resolved x-ray diffraction measurements, Phys. Rev. Lett. 95 (2005) 246104. https://doi.org/10.1103/PhysRevLett.95.246104
  30. G.J. Williams, S. Lee, D.A. Walko, M.A. Watson, W. Jo, D.R. Lee, E.C. Landahl, Direct measurements of multi-photon induced nonlinear lattice dynamics in semiconductors via time-resolved x-ray scattering, Sci. Rep. 6 (2016) 39506. https://doi.org/10.1038/srep39506
  31. C.R. Wie, T.A. Tombrello, T. Vreeland, Dynamical xray diffraction from nonuniform crystalline films: application to xray rocking curve analysis, J. Appl. Phys. 59 (1986) 3743-3746. https://doi.org/10.1063/1.336759
  32. W. Jo, I. Eom, E.C. Landahl, S. Lee, C.-J. Yu, Demonstration of a time-resolved x-ray scattering instrument utilizing the full-repetition rate of x-ray pulses at the Pohang Light Source, Rev. Sci. Instrum. 87 (2016) 035107. https://doi.org/10.1063/1.4943304
  33. Y. Hayashi, Y. Tanaka, T. Kirimura, N. Tsukuda, E. Kuramoto, T. Ishikawa, Acoustic pulse echoes probed with time-resolved x-ray triple-crystal diffractometry, Phys. Rev. Lett. 96 (2006) 115505. https://doi.org/10.1103/PhysRevLett.96.115505
  34. C.G. Van de Walle, Band lineups and deformation potentials in the model-solid theory, Phys. Rev. B 39 (1989) 1871-1883. https://doi.org/10.1103/PhysRevB.39.1871
  35. C. Xu, C.L. Senaratne, J. Kouvetakis, J. Menendez, Experimental doping dependence of the lattice parameter in n -type Ge: identifying the correct theoretical framework by comparison with Si, Phys. Rev. B 93 (2016) 1-5.
  36. H. Hu, M. Liu, Z.F. Wang, J. Zhu, D. Wu, H. Ding, Z. Liu, F. Liu, Quantum electronic stress: density-functional-theory formulation and physical manifestation, Phys. Rev. Lett. 109 (2012) 055501. https://doi.org/10.1103/PhysRevLett.109.055501
  37. W. Paul, D. Warschauer, Optical properties of semiconductors under hydrostatic pressureii. silicon, J. Phys. Chem. Solid. 5 (1958) 102-106. https://doi.org/10.1016/0022-3697(58)90135-5
  38. A. Ramer, O. Osmani, B. Rethfeld, Laser damage in silicon: energy absorption, relaxation, and transport, J. Appl. Phys. 116 (2014) 053508. https://doi.org/10.1063/1.4891633
  39. S.K. Sundaram, E. Mazur, Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses, Nat. Mater. 1 (2002) 217-224. https://doi.org/10.1038/nmat767
  40. J. Dorkel, P. Leturcq, Carrier mobilities in silicon semi-empirically related to temperature, doping and injection level, Solid State Electron. 24 (1981) 821-825. https://doi.org/10.1016/0038-1101(81)90097-6
  41. D. Klaassen, A unified mobility model for device simulationI. Model equations and concentration dependence, Solid State Electron. 35 (1992) 953-959. https://doi.org/10.1016/0038-1101(92)90325-7
  42. A. Mouskeftaras, M. Chanal, M. Chambonneau, R. Clady, O. Utéza, D. Grojo, Direct measurement of ambipolar diffusion in bulk silicon by ultrafast infrared imaging of laser-induced microplasmas, Appl. Phys. Lett. 108 (2016) 041107. https://doi.org/10.1063/1.4941031
  43. M.F. DeCamp, D.A. Reis, A. Cavalieri, P.H. Bucksbaum, R. Clarke, R. Merlin, E.M. Dufresne, D.A. Arms, A.M. Lindenberg, A.G. MacPhee, Z. Chang, B. Lings, J.S. Wark, S. Fahy, Transient strain driven by a dense electron-hole plasma, Phys. Rev. Lett. 91 (2003) 165502. https://doi.org/10.1103/PhysRevLett.91.165502
  44. A. Bayliss, Numerical Solution of Partial Differential Equations: Theory, Tools and Case Studies, volume 66 of International Series of Numerical Mathematics/ Internationale Schriftenreihe zur Numerischen Mathematik/Série internationale d'Analyse numerique, Birkhauser Basel, Basel, 1983.
  45. K.L. Luke, L. Cheng, Analysis of the interaction of a laser pulse with a silicon wafer: determination of bulk lifetime and surface recombination velocity, J. Appl. Phys. 61 (1987) 2282-2293. https://doi.org/10.1063/1.337938
  46. M.J. Kerr, A. Cuevas, General parameterization of Auger recombination in crystalline silicon, J. Appl. Phys. 91 (2002) 2473-2480. https://doi.org/10.1063/1.1432476
  47. A. Richter, S.W. Glunz, F. Werner, J. Schmidt, A. Cuevas, Improved quantitative description of Auger recombination in crystalline silicon, Phys. Rev. B 86 (2012) 165202. https://doi.org/10.1103/PhysRevB.86.165202

Cited by

  1. Reduced Thermal Conductivity in Ultrafast Laser Heated Silicon Measured by Time-Resolved X-ray Diffraction vol.11, pp.2, 2021, https://doi.org/10.3390/cryst11020186