Graphite can be classified into natural graphite from mines and artificial graphite. Due to its outstanding properties such as light weight, thermal resistance, electrical conductivity, thermal conductivity, chemical stability, and high-temperature strength, artificial graphite is used across various industries in powder form and bulk form. Artificial graphite of powder form is usually used as anode materials for secondary cells, while artificial graphite of bulk form is used in steelmaking electrode bars, nuclear reactor moderators, silicon ingots for semiconductors, and manufacturing equipment. This study defines artificial graphite as bulk graphite, and provides an overview of bulk graphite manufacturing, including isotropic and anisotropic materials, molding methods, and heat treatment.
Lee, Sang Hye;Lee, Sang Min;Jang, Won Pyo;Roh, Jae Seung
Journal of Powder Materials
/
v.28
no.1
/
pp.13-19
/
2021
Bulk graphite is manufactured using graphite scrap as the filler and phenolic resin as the binder. Graphite scrap, which is the by-product of processing the final graphite product, is pulverized and sieved by particle size. The relationship between the density and porosity is analyzed by measuring the mechanical properties of bulk graphite. The filler materials are sieved into mean particle sizes of 10.62, 23.38, 54.09, 84.29, and 126.64 ㎛. The bulk graphite density using the filler powder with a particle size of 54.09 ㎛ is 1.38 g/㎤, which is the highest value in this study. The compressive strength tends to increase as the bulk graphite density increases. The highest compressive strength of 43.14 MPa is achieved with the 54.09 ㎛ powder. The highest flexural strength of 23.08 MPa is achieved using the 10.62 ㎛ powder, having the smallest average particle size. The compressive strength is affected by the density of bulk graphite, and the flexural strength is affected by the filler particle size of bulk graphite.
The change in the open porosity of bulk graphite as a function of the uniaxial molding pressure during manufacturing is studied using artificial graphite powder. Subsequently, the graphite is impregnated to determine the effect of the open porosity on the impregnation efficiency and to improve the density of the final bulk graphite. Bulk graphite is manufactured with different uniaxial molding pressures after mixing graphite powder, which is the by-product of processing the final graphite products and phenolic resin. The bulk density and open porosity are measured using the Archimedes method. The bulk density and open porosity of bulk graphite increase as the molding pressure increases. The open porosity of molded bulk graphite is 25.35% at 30 MPa and 29.84% at 300 MPa. It is confirmed that the impregnation efficiency increases when the impregnation process is performed on a specimen with large open porosity. In this study, the bulk density of bulk graphite molded at 300 MPa is 11.06% higher than that before impregnation, which is the highest reported increase. Therefore, it is expected that the higher the uniaxial pressure, the higher the density of bulk graphite.
When manufacturing bulk graphite, pores develop within the bulk during the carbonization process due to the volatile components of the fillers and the binders. As a result, the physical properties of bulk graphite are inferior to the theoretical values. Impregnants are impregnated into the pores generated in the carbonization process through pressurization and/or depressurization. The physical properties of bulk graphite that has undergone impregnation and re-carbonization processes are outstanding. In the present study, a green body was manufactured by molding with natural graphite flakes and phenolic resin at 45 MPa. Bulk graphite was manufactured by carbonizing the green body at 700 and it was subsequently impregnated with impregnants having viscosity of 25.0 cP, 10.3 cP, and 5.1 cP, and the samples were re-carbonized at $700^{\circ}C$. The above process was repeated three times. The open porosity of bulk graphite after the final process was 22.25%, 19.86%, and 18.58% in the cases of using the impregnant with viscosity of 25.0 cP, 10.3 cP, and 5.1 cP, respectively.
In the manufacturing of bulk graphite, pores produced by vaporization and discharge of volatile materials in binders during carbonization reduce the density of bulk graphite, which adversely affects the electrical conductivity, strength and mechanical properties. Therefore, an impregnation process is introduced to fill the pores and increase the density of bulk graphite. In this study, bulk graphite is prepared by varying the viscosity of the impregnant. The microstructure of bulk graphite is observed. The flexural strength and electrical resistivity are measured. As the viscosity of the impregnants decreases and the number of impregnations increases, it is shown that the number of pores decreases. The density before impregnation is 1.62 g/㎤. The density increases to 1.67 g/㎤ and porosity decreases by 18.6 % after three impregnations using 5.1 cP impregnant, resulting in the best pore-filling effect. After three times of impregnation with a viscosity of 5.1 cP, the flexural strength increases by 55.2 % and the electrical resistivity decreases by 86.76 %. This shows that a slight increase in density due to the pore-filling effect improves the properties of bulk graphite.
Isotropic synthetic graphite scrap and phenolic resin were mixed, and the mixed powder was formed at 300 MPa to produce a green body. New bulk graphite was produced by carbonizing the green body at $700^{\circ}C$, and the bulk graphite thus produced was impregnated with resin and re-carbonized at $700^{\circ}C$. The bulk density of the bulk graphite was $1.29g/cm^3$, and the porosity of the open pores was 29.8%. After one impregnation, the density increased to $1.44g/cm^3$ while the porosity decreased to 25.2%. Differences in the pore distribution before and after impregnation were easily confirmed by observing the microstructure. In addition, by using an X-ray diffractometer, the degrees-of-alignment (Da) were obtained for one side perpendicular to the direction of compression molding of the bulk graphite (the "top-face"), and one side parallel to the direction of compression molding (the "side-face"). The anisotropy ratio calculated from the Da-values obtained was 1.13, which indicates comparatively good isotropy.
Pores produced by carbonization in bulk graphite process degrade the mechanical and electrical properties of bulk graphite. Therefore, the pores of bulk graphite must be reduced and an impregnation process needs to be performed for this reason. In this study, bulk graphite is impregnated by varying the viscosity of the impregnant. The pore volume and pore size distribution, according to the viscosity of the impregnant, are analyzed using a porosimeter. The total pore volume of bulk graphite is analyzed from the cumulative amount of mercury penetrated. The volume for a specific pore size is interpreted as the amount of mercury penetrating into that pore size. This decreases the cumulative amount of mercury penetrating into the recarbonized bulk graphite after impregnation because the viscosity of the impregnant is lower. The cumulative amount of mercury penetrating into bulk graphite before impregnation and after three times of impregnation with 5.1cP are 0.144 mL/g and 0.125 mL/gm, respectively. Therefore, it is confirmed that the impregnant filled the pores of the bulk graphite well. In this study, the impregnant with 5.1 cP, which is the lowest viscosity, shows the best effect for reducing the total pore volume. In addition, it is confirmed by Raman analysis that the impregnant is filled inside the pores. It is confirmed that phenolic resin, the impregnant, exists inside the pores through micro-Raman analysis from the inside of the pore to the outside.
This paper studied the possibility of manufacturing bulk graphite using coal tar, a precursor of coal tar pitch, as a binder and impregnant. Carbonization was conducted after mixing and molding with natural graphite as a filler and coal tar as a binder. Impregnation-recarbonization was performed five times after carbonization. Coal tar used as impregnant. Measuring density, porosity, compressive strength, and anisotropy ratio was conducted. The maximum density of bulk graphite specimen was 1.76 g/㎤ and the minimum porosity was 15.6% which could be controlled by process control. The highest compressive strength was 20.3 MPa. Then the maximum anisotropic ratio of bulk was shown 0.34 through XRD analysis. Therefore, it was confirmed that it was possible to manufacture artificial graphite in a bulk form by using coal tar as a binder and an impregnant.
The bipolar plate is the most important and most costly component of proton exchange membrane fuel cells. The development of a suitable low density bipolar plate is scientifically and technically challenging due to the need to maintain high electrical conductivity and mechanical properties. Here, bipolar plates were developed from different particle sizes of natural and expanded graphite with phenolic resin as a polymeric matrix. It was observed that the particle size of the reinforcement significantly influences the mechanical and electrical properties of a composite bipolar plate. The composite bipolar plate based on expanded graphite gives the desired mechanical and electrical properties as per the US Department of Energy target, with a bulk density of 1.55 $g.cm^{-3}$ as compared to that of ~1.87 $g.cm^{-3}$ for a composite plate based on natural graphite (NG). Although the bulk density of the expanded-graphite-based composite plate is ~20% less than that of the NG-based plate, the I-V performance of the expanded graphite plate is superior to that of the NG plate as a consequence of the higher conductivity. The expanded graphite plate can thus be used as an electromagnetic interference shielding material.
This study is the research on the thermal emissivity depending on the bulk graphite's alignment degree. Bulk graphites were manufactured by uni-axial pressing and subsequent heat treatment of natural graphite flakes with organic binder. The samples were prepared to be $0^{\circ}$ (relative to the 002 c-face), $45^{\circ}$, and $90^{\circ}$ (relative to the 100 a-face) for measuring alignment degree. The alignment degree of the sample was measured by XRD. The thermal emissivity was measured by infrared thermal image camera at $100^{\circ}C$ and compared with the value obtained by Infrared spectroscopy. The alignment degree and thermal emissivity of $0^{\circ}$ sample were measured to be 0 and 0.70 respectively. And those of $90^{\circ}$ sample were 0.73 and 0.80 respectively. The emissivity value was correlated with obtained by IR spectroscopy. Therefore it was considered that the thermal emissivity of the bulk graphite is correlated with the alignment degree.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.