Browse > Article
http://dx.doi.org/10.4150/KPMI.2021.28.1.13

Mechanical Properties of Bulk Graphite using Artificial Graphite Scrap as a Function of Particle Size  

Lee, Sang Hye (School of Materials Science and Engineering, Kumoh National Institute of Technology)
Lee, Sang Min (Advanced Material Research Center, Kumoh National Institute of Technology)
Jang, Won Pyo (GeumSungTech)
Roh, Jae Seung (School of Materials Science and Engineering, Kumoh National Institute of Technology)
Publication Information
Journal of Powder Materials / v.28, no.1, 2021 , pp. 13-19 More about this Journal
Abstract
Bulk graphite is manufactured using graphite scrap as the filler and phenolic resin as the binder. Graphite scrap, which is the by-product of processing the final graphite product, is pulverized and sieved by particle size. The relationship between the density and porosity is analyzed by measuring the mechanical properties of bulk graphite. The filler materials are sieved into mean particle sizes of 10.62, 23.38, 54.09, 84.29, and 126.64 ㎛. The bulk graphite density using the filler powder with a particle size of 54.09 ㎛ is 1.38 g/㎤, which is the highest value in this study. The compressive strength tends to increase as the bulk graphite density increases. The highest compressive strength of 43.14 MPa is achieved with the 54.09 ㎛ powder. The highest flexural strength of 23.08 MPa is achieved using the 10.62 ㎛ powder, having the smallest average particle size. The compressive strength is affected by the density of bulk graphite, and the flexural strength is affected by the filler particle size of bulk graphite.
Keywords
Filler; Artificial graphite scrap; Particle size; Compressive strength; Flexible strength;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. S. Ko: Ceramist, 9 (1994) 18.
2 D. D. L. Chung: J. Mater. Sci., 37 (2002) 1475.   DOI
3 K. Y. Cho, K. J. Kim, Y. S. Lim, Y. J. Chung and S. H. Chi: Carbon Lett., 7 (2006) 196.
4 L. Xiaowei, R. Jean-Charles and Y. Suyuan: Nucl. Eng. Des., 227 (2004) 273.   DOI
5 G. D. Considine: Van Nostrand's Encyclopedia of Chemistry. 5th ed., Wiley-Interscience, New Jersey, (2005).
6 N. Cunningham, M. Lefevre, J. P. Dodelet, Y. Thomas and S. Pelletier: Carbon, 43 (2005) 3054.   DOI
7 K. Ohkita and N. Tubokawa: Carbon, 10 (1972) 631.   DOI
8 J. Y. Kim, S. Y. Lee, J. H. Choi and Y. D. Park: J. Kor. Ceram. Soc., 29 (1992) 396.
9 Y. W. Shin: The J. of thr Korean Soc. for Power Syst. Eng., 9 (2005) 143.
10 K. Janerka and D. Bartocha: Arch. Foundry Eng, 8 (2008) 55.
11 A. Roessler and D. Crettenand: Dyes Pigm., 63 (2004) 29.   DOI
12 S. M. Lee, D. S. Kang, W. S. Kim and J. S. Roh: Carbon Lett., 15 (2014) 142.   DOI
13 Y. S. Han, H. J. Kim, Y. S. Shin, J. K. Park and J. C. Ko: J. Korean Ceram. Soc., 46 (2009) 16.   DOI
14 D. S. Kang: Ph. D. Dissertation, Change of interfacial structure of natural graphite and phenolic resin as a function of carbonization condition, , Kumoh National Institute of Technology, Gumi, (2018) 80.
15 J. H. Eom, D. H. Jang, Y. W. Kim, I. H. Song and H. D. Kim: J. Korean Ceram. Soc., 43 (2006) 552.   DOI
16 J. Y. Kim, S. Y. Lee, J. H. Choi and Y. D. Park: Ceram. Soc., 29 (1992) 396.
17 S. H. Kim and H. T. Hahn: Adv. Compos. Mater., 15 (2006) 175.   DOI
18 C. I. Fan and H. Chen: J. Mater. Sci., 46 (2011) 2140.   DOI