Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.2.108

Changes in Flexural Strength and Electrical Resistivity of Bulk Graphite According to the Viscosity of Impregnant  

Lee, Sang-Min (Advanced Material Research Center, Kumoh National Institute of Technology)
Lee, Sang-Hye (School of Materials Science and Engineering, Kumoh National Institute of Technology)
Roh, Jae-Seung (School of Materials Science and Engineering, Kumoh National Institute of Technology)
Publication Information
Korean Journal of Materials Research / v.31, no.2, 2021 , pp. 108-114 More about this Journal
Abstract
In the manufacturing of bulk graphite, pores produced by vaporization and discharge of volatile materials in binders during carbonization reduce the density of bulk graphite, which adversely affects the electrical conductivity, strength and mechanical properties. Therefore, an impregnation process is introduced to fill the pores and increase the density of bulk graphite. In this study, bulk graphite is prepared by varying the viscosity of the impregnant. The microstructure of bulk graphite is observed. The flexural strength and electrical resistivity are measured. As the viscosity of the impregnants decreases and the number of impregnations increases, it is shown that the number of pores decreases. The density before impregnation is 1.62 g/㎤. The density increases to 1.67 g/㎤ and porosity decreases by 18.6 % after three impregnations using 5.1 cP impregnant, resulting in the best pore-filling effect. After three times of impregnation with a viscosity of 5.1 cP, the flexural strength increases by 55.2 % and the electrical resistivity decreases by 86.76 %. This shows that a slight increase in density due to the pore-filling effect improves the properties of bulk graphite.
Keywords
bulk graphite; impregnant; viscosity; flexural strength; resistivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. B. Donnet, S. J. Park and M. Brendle, Carbon, 30, 263 (1992).   DOI
2 J. D. Brooks and G. H. Taylor, Chemistry and Physics of Carbon, 1st ed., p.243, P. L. Walker, Jr., M. Dekker, New York (1968).
3 H. March, E. A. Heintz and F. Rodriguez-Reinoso, Introduction to Carbon Technologies, p.669, University of Alicante, Spain (1997).
4 J. S. Mattson and H. B. Mark, Activated Carbon: Surface Chemistry and Adsorption from Solution, p.227, M. Dekker, New York (1971).
5 K. Ohkita and N. Tubokawa, Carbon, 10, 631 (1972).   DOI
6 J. Y. Kim, S. Y. Lee, J. H. Choi and Y. D. Park, J. Korean Ceram. Soc., 29, 396 (1992).
7 H. J. Chung and Y. S. Lim, J. Korean Ceram. Soc., 33, 1387 (1996).
8 Y. W. Shin, The J. of thr Korean Soc. for Power Syst. Eng., 9, 143 (2005).
9 P. D. Matzinos, J. W. Patrick and A. Walker, Carbon, 34, 639 (1996).   DOI
10 H. N. Youm, K. J. Kim, J. M. Lee and Y. J. Chung, J. Korean Ceram. Soc., 30, 852 (1993).
11 J. Wang, Microelectron. Reliab., 42, 293 (2002).   DOI
12 J. Y. Sung, S. J. Lee and P. H. Shin, Journal of the Korean Society of Machine Tool Engineers Spring Conference(Mokpo, May 2008), p.155, The Korean Society of Manufacturing Technology Engineers, Seoul (2008).
13 Y. S. Han, H. J. Kim, Y. S. Shin, J. K. Park and J. C. Ko, J. Korean Ceram. Soc., 46, 16 (2009).   DOI
14 Y. Oguchi and J. Mori, Taikabutsu Overseas, 13, 43 (1993).
15 S. J. Park, Carbon Material, p.68, Daeyoungsa, Seoul (2006).
16 S. M. Lee, D. S. Kang, H. S. Kim and J. S. Roh, Carbon Lett., 16, 132 (2015).   DOI
17 S. M. Lee, D. S. Kang, W. S. Kim and J. S. Roh, Carbon Lett., 15, 142 (2014).   DOI
18 G. Bhatia and R. K. Aggarwal, J. Mater. Sci., 16, 1757 (1981).   DOI
19 Z. Lausevic and S. Marinkovic, Carbon, 24, 575 (1986).   DOI
20 Y. Yamashita and K. Ouchi, Carbon, 19, 89 (1981).   DOI
21 R. Lum, C. W. Wilkins, M. Robbins, A. M. Lyons and R. P. Jones, Carbon, 21, 111 (1983).   DOI
22 R. B. Mathur, S. R. Dhakate, D. K. Gupta, T. L. Dhami and R. K. Aggarwal, J. Mater. Process. Tech., 203, 184 (2008).   DOI