Browse > Article
http://dx.doi.org/10.4150/KPMI.2021.28.1.7

Effect of Change in Open Porosity as a Function of Uniaxial Molding Pressure on Density Improvement After Impregnation  

Lee, Sang-Min (Advanced Material Research Center, Kumoh National Institute of Technology)
Lee, Sang-Hye (School of Materials Science and Engineering, Kumoh National Institute of Technology)
Roh, Jae-Seung (School of Materials Science and Engineering, Kumoh National Institute of Technology)
Publication Information
Journal of Powder Materials / v.28, no.1, 2021 , pp. 7-12 More about this Journal
Abstract
The change in the open porosity of bulk graphite as a function of the uniaxial molding pressure during manufacturing is studied using artificial graphite powder. Subsequently, the graphite is impregnated to determine the effect of the open porosity on the impregnation efficiency and to improve the density of the final bulk graphite. Bulk graphite is manufactured with different uniaxial molding pressures after mixing graphite powder, which is the by-product of processing the final graphite products and phenolic resin. The bulk density and open porosity are measured using the Archimedes method. The bulk density and open porosity of bulk graphite increase as the molding pressure increases. The open porosity of molded bulk graphite is 25.35% at 30 MPa and 29.84% at 300 MPa. It is confirmed that the impregnation efficiency increases when the impregnation process is performed on a specimen with large open porosity. In this study, the bulk density of bulk graphite molded at 300 MPa is 11.06% higher than that before impregnation, which is the highest reported increase. Therefore, it is expected that the higher the uniaxial pressure, the higher the density of bulk graphite.
Keywords
Bulk graphite; Open porosity; Compacting pressure; Orientation; Anisotropy ratio;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Setton, P. Bernier and S. Lefrant: Carbon Molecules and Materials, Taylor & Francis, 14 (2002) 457.
2 C. L. Fan, H. He, K. H. Zhang and S. C. Han: Electrochim. Acta, 75 (2012) 311.   DOI
3 S. M. Lee, D. S. Kang and J. S. Roh: Carbon Lett., 16 (2015) 135.   DOI
4 K. Y. Cho, K. J. Kim, Y. S. Lim, Y. J. Chung and S. H. Chi: Carbon Lett., 7 (2006) 196.
5 L. Xiaowei, R. Jean-Charles and Y. Suyuan: Nucl. Eng. Des., 227 (2004) 273.   DOI
6 G. D. Considine: Van Nostrand's Encyclopedia of Chemistry. 5th ed., Wiley-Interscience, New Jersey, (2005).
7 N. Cunningham, M. Lefevre, J. P. Dodelet, Y. Thomas and S. Pelletier: Carbon, 43 (2005) 3054.   DOI
8 H. J. Chung and Y. S. Lim: J. Kor. Ceram. Soc., 33 (1996) 1387.
9 Y. W. Shin: The J. of thr Korean Soc. for Power Sy st. Eng., 9 (2005) 143.
10 S. Y. Lim, D. W. Jung, S. H. Yoon and I. Mochida: Carbon Lett., 9 (2008) 47.   DOI
11 Y. S. Han, H. J. Kim, Y. S. Shin, J. K. Park and J. C. Ko: J. Korean Ceram. Soc., 46 (2009) 16.   DOI
12 K. Ishizaki, S. Komarneni and M. Nanko: Kluwer Academic Publishers, (1998).
13 S. M. Lee, D. S. Kang, W. S. Kim and J. S. Roh: Carbon Lett., 15 (2014) 142.   DOI
14 A. Cao, C. Xu, J. Liang, D. Wu and B. Wei: Chem. Phys. Lett., 344 (2001) 13.   DOI
15 J. S. Roh: Carbon Lett., 5 (2004) 27.
16 M. S. Seehra, A. S. Pavlovic, V. S. Babu, J. W. Zondlo, P. G. Stansberry and A. H. Stiller: Carbon, 32 (1994) 431.   DOI
17 T. E. Weller, M. Ellerby, S. S. Saxena, R. P. Smith and N. T. Skipper: Nat. Phys., 1 (2005) 39.   DOI
18 G. A. Slack: Phys. Rev., 127 (1962) 694.   DOI
19 L. Lu, V. Sahajwalla, C. Kong and D. Harris: Carbon, 39 (2001) 1821.   DOI
20 B. Manoj and A. G. Kunjomana: Int. J. Electrochem. Sci., 7 (2012) 3127.
21 J. B. Aladekomo and R. H. Bragg: Carbon, 28 (1990) 897.   DOI
22 T. D. Shen, W. Q. Ge, K. Y. Wang, M. X. Quan, J. T. Wang, W. D. Wei and C. C. Koch: Nanostructured Materials, 7 (1996) 393.   DOI
23 S. H. Lee, D. S. Kang, S. M. Lee and J. S. Roh: Carbon Lett., 26 (2018) 11.   DOI