DOI QR코드

DOI QR Code

The Pore-filling Effect of Bulk Graphite According to Viscosity of Impregnant

함침재의 점도에 따른 벌크흑연의 기공 채움 효과

  • Lee, Sang-Min (Advanced Material Research Center, Kumoh National Institute of Technology) ;
  • Lee, Sang-Hye (School of Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • Roh, Jae-Seung (School of Materials Science and Engineering, Kumoh National Institute of Technology)
  • 이상민 (금오공과대학교 신소재연구소) ;
  • 이상혜 (금오공과대학교 신소재공학과) ;
  • 노재승 (금오공과대학교 신소재공학과)
  • Received : 2021.01.06
  • Accepted : 2021.02.01
  • Published : 2021.02.27

Abstract

Pores produced by carbonization in bulk graphite process degrade the mechanical and electrical properties of bulk graphite. Therefore, the pores of bulk graphite must be reduced and an impregnation process needs to be performed for this reason. In this study, bulk graphite is impregnated by varying the viscosity of the impregnant. The pore volume and pore size distribution, according to the viscosity of the impregnant, are analyzed using a porosimeter. The total pore volume of bulk graphite is analyzed from the cumulative amount of mercury penetrated. The volume for a specific pore size is interpreted as the amount of mercury penetrating into that pore size. This decreases the cumulative amount of mercury penetrating into the recarbonized bulk graphite after impregnation because the viscosity of the impregnant is lower. The cumulative amount of mercury penetrating into bulk graphite before impregnation and after three times of impregnation with 5.1cP are 0.144 mL/g and 0.125 mL/gm, respectively. Therefore, it is confirmed that the impregnant filled the pores of the bulk graphite well. In this study, the impregnant with 5.1 cP, which is the lowest viscosity, shows the best effect for reducing the total pore volume. In addition, it is confirmed by Raman analysis that the impregnant is filled inside the pores. It is confirmed that phenolic resin, the impregnant, exists inside the pores through micro-Raman analysis from the inside of the pore to the outside.

Keywords

References

  1. S. M. Lee, D. S. Kang and J. S. Roh, Carbon Lett., 16, 135 (2015). https://doi.org/10.5714/CL.2015.16.3.135
  2. C. L. Fan, H. He, K. H. Zhang and S. C. Han, Electrochim. Acta, 75, 311 (2012). https://doi.org/10.1016/j.electacta.2012.05.010
  3. K. Y. Cho, K. J. Kim, Y. S. Lim, Y. J. Chung and S. H. Chi, Carbon Lett., 7, 196 (2006).
  4. L. Xiaowei, R. Jean-Charles and Y. Suyuan, Nucl. Eng. Des., 227, 273 (2004). https://doi.org/10.1016/j.nucengdes.2003.11.004
  5. G. D. Considine. Van Nostrand's Encyclopedia of Chemistry, 5th ed., p.739, John Wiley & Sons, Hoboken, New Jersey (2005).
  6. N. Cunningham, M. Lefevre, J. P. Dodelet, Y. Thomas and S. Pelletier, Carbon, 43, 3054 (2005). https://doi.org/10.1016/j.carbon.2005.06.045
  7. H. Zhao, Z. He, X. Guo, P. Lian and Z. Liu, New Carbon Mater., 35, 184 (2020). https://doi.org/10.1016/s1872-5805(20)60483-8
  8. I. C. Lewis, Baked and graphitized carbon(in Encyclopedia of Chemical Technology, 4th ed., p.953, Kirk-Othmer, John Wiley & Sons, New York (1992)
  9. H. O. Pierson, Handbook of Carbon, Graphite, Diamond, and Fullerenes: Properties, Processing, and Applications, p.72, Noyes Publications, Park Ridge, NJ (1993).
  10. H. Y. Castner, GB Patent 19,089 (1893).
  11. E. G. Acheson, US Patent 568,323 (1896).
  12. K. Y. Wen, T. J. Marrow and B. J. Marsden, Carbon, 46, 62 (2008). https://doi.org/10.1016/j.carbon.2007.10.025
  13. D. L. Turk, Processing of Baked and Graphitized Carbon (Encyclopedia of Chemical Technology), 4th ed., p.960, Kirk-Othmer, John Wiley & Sons, New York (1992).
  14. A. Charette, D. Kocaefe, J. L. Saint-Romain and P. Couderc, Carbon, 29, 1015 (1991). https://doi.org/10.1016/0008-6223(91)90181-H
  15. H. N. Youm, K. J. Kim, J. M. Lee and Y. J. Chung, J. Korean Ceram. Soc., 30, 852 (1993).
  16. S. M. Lee, D. S. Kang, H. S. Kim and J. S. Roh, Carbon Lett., 16, 132 (2015). https://doi.org/10.5714/CL.2015.16.2.132
  17. A. Cuesta, P. Dhamelincourt, J. Laureyns, A. M. Alonso and J. M. D. Tascon, Carbon, 32, 1523 (1994). https://doi.org/10.1016/0008-6223(94)90148-1
  18. Y. M. Kim, K. L. An, C. Kim, Y. O. Choi, S. H. Park, K. S. Yang and W. E. Lee, Carbon Lett., 1, 22 (2000).
  19. H. C. Kim, S. M. Lee, G. Nam and J. S. Roh, Korean J. Met. Mater., 30, 522 (2020). https://doi.org/10.3740/MRSK.2020.30.10.522
  20. D. S. Knight and W. B. White, J. Mater. Res., 4, 385 (1989). https://doi.org/10.1557/JMR.1989.0385
  21. M. Endo, C. Kim, T. Karaki, T. Kasai, M. J. Matthews, S. D. M. Brown, M. S. Dresselhaus, T. Tamaki and Y. Nishimura, Carbon, 36, 1633 (1998). https://doi.org/10.1016/S0008-6223(98)00157-2
  22. J. S. Roh, Carbon Lett., 9, 127 (2008). https://doi.org/10.5714/CL.2008.9.2.127
  23. H. Lipson and A. R. Stokes, Proc. R. Soc. Lond. A, 181, 101 (1942). https://doi.org/10.1098/rspa.1942.0063
  24. S. S. Kim, J. Korean Electrochem. Soc., 11, 211 (2008). https://doi.org/10.5229/JKES.2008.11.3.211
  25. Y. Oguchi and J. Mori, Taikabutsu Overseas, 13, 43 (1993).
  26. B. Nagai, O. Matsumoto, T. Isobe and Y. Nishiumi, Taikabutsu Overseas, 12, 15 (1992).