DOI QR코드

DOI QR Code

Effect of Change in Open Porosity as a Function of Uniaxial Molding Pressure on Density Improvement After Impregnation

일축가압법으로 벌크흑연 제조 시 성형압력에 따른 열린기공률 변화가 함침 후 밀도 향상에 미치는 영향

  • Lee, Sang-Min (Advanced Material Research Center, Kumoh National Institute of Technology) ;
  • Lee, Sang-Hye (School of Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • Roh, Jae-Seung (School of Materials Science and Engineering, Kumoh National Institute of Technology)
  • 이상민 (금오공과대학교 신소재연구소) ;
  • 이상혜 (금오공과대학교 신소재공학과) ;
  • 노재승 (금오공과대학교 신소재공학과)
  • Received : 2021.01.06
  • Accepted : 2021.02.15
  • Published : 2021.02.28

Abstract

The change in the open porosity of bulk graphite as a function of the uniaxial molding pressure during manufacturing is studied using artificial graphite powder. Subsequently, the graphite is impregnated to determine the effect of the open porosity on the impregnation efficiency and to improve the density of the final bulk graphite. Bulk graphite is manufactured with different uniaxial molding pressures after mixing graphite powder, which is the by-product of processing the final graphite products and phenolic resin. The bulk density and open porosity are measured using the Archimedes method. The bulk density and open porosity of bulk graphite increase as the molding pressure increases. The open porosity of molded bulk graphite is 25.35% at 30 MPa and 29.84% at 300 MPa. It is confirmed that the impregnation efficiency increases when the impregnation process is performed on a specimen with large open porosity. In this study, the bulk density of bulk graphite molded at 300 MPa is 11.06% higher than that before impregnation, which is the highest reported increase. Therefore, it is expected that the higher the uniaxial pressure, the higher the density of bulk graphite.

Keywords

References

  1. R. Setton, P. Bernier and S. Lefrant: Carbon Molecules and Materials, Taylor & Francis, 14 (2002) 457.
  2. C. L. Fan, H. He, K. H. Zhang and S. C. Han: Electrochim. Acta, 75 (2012) 311. https://doi.org/10.1016/j.electacta.2012.05.010
  3. S. M. Lee, D. S. Kang and J. S. Roh: Carbon Lett., 16 (2015) 135. https://doi.org/10.5714/CL.2015.16.3.135
  4. K. Y. Cho, K. J. Kim, Y. S. Lim, Y. J. Chung and S. H. Chi: Carbon Lett., 7 (2006) 196.
  5. L. Xiaowei, R. Jean-Charles and Y. Suyuan: Nucl. Eng. Des., 227 (2004) 273. https://doi.org/10.1016/j.nucengdes.2003.11.004
  6. G. D. Considine: Van Nostrand's Encyclopedia of Chemistry. 5th ed., Wiley-Interscience, New Jersey, (2005).
  7. N. Cunningham, M. Lefevre, J. P. Dodelet, Y. Thomas and S. Pelletier: Carbon, 43 (2005) 3054. https://doi.org/10.1016/j.carbon.2005.06.045
  8. H. J. Chung and Y. S. Lim: J. Kor. Ceram. Soc., 33 (1996) 1387.
  9. Y. W. Shin: The J. of thr Korean Soc. for Power Sy st. Eng., 9 (2005) 143.
  10. S. Y. Lim, D. W. Jung, S. H. Yoon and I. Mochida: Carbon Lett., 9 (2008) 47. https://doi.org/10.5714/CL.2008.9.1.047
  11. Y. S. Han, H. J. Kim, Y. S. Shin, J. K. Park and J. C. Ko: J. Korean Ceram. Soc., 46 (2009) 16. https://doi.org/10.4191/KCERS.2009.46.1.016
  12. K. Ishizaki, S. Komarneni and M. Nanko: Kluwer Academic Publishers, (1998).
  13. S. M. Lee, D. S. Kang, W. S. Kim and J. S. Roh: Carbon Lett., 15 (2014) 142. https://doi.org/10.5714/CL.2014.15.2.142
  14. A. Cao, C. Xu, J. Liang, D. Wu and B. Wei: Chem. Phys. Lett., 344 (2001) 13. https://doi.org/10.1016/S0009-2614(01)00671-6
  15. J. S. Roh: Carbon Lett., 5 (2004) 27.
  16. M. S. Seehra, A. S. Pavlovic, V. S. Babu, J. W. Zondlo, P. G. Stansberry and A. H. Stiller: Carbon, 32 (1994) 431. https://doi.org/10.1016/0008-6223(94)90163-5
  17. T. E. Weller, M. Ellerby, S. S. Saxena, R. P. Smith and N. T. Skipper: Nat. Phys., 1 (2005) 39. https://doi.org/10.1038/nphys0010
  18. G. A. Slack: Phys. Rev., 127 (1962) 694. https://doi.org/10.1103/PhysRev.127.694
  19. L. Lu, V. Sahajwalla, C. Kong and D. Harris: Carbon, 39 (2001) 1821. https://doi.org/10.1016/S0008-6223(00)00318-3
  20. B. Manoj and A. G. Kunjomana: Int. J. Electrochem. Sci., 7 (2012) 3127.
  21. J. B. Aladekomo and R. H. Bragg: Carbon, 28 (1990) 897. https://doi.org/10.1016/0008-6223(90)90338-Y
  22. T. D. Shen, W. Q. Ge, K. Y. Wang, M. X. Quan, J. T. Wang, W. D. Wei and C. C. Koch: Nanostructured Materials, 7 (1996) 393. https://doi.org/10.1016/0965-9773(96)00010-4
  23. S. H. Lee, D. S. Kang, S. M. Lee and J. S. Roh: Carbon Lett., 26 (2018) 11. https://doi.org/10.5714/CL.2018.26.011