• Title/Summary/Keyword: Built-in-self-calibration

Search Result 8, Processing Time 0.018 seconds

A Single-Slope Column-ADC using Ramp Slope Built-In-Self-Calibration Scheme for a CMOS Image Sensor (자동 교정된 램프 신호를 사용한 CMOS 이미지 센서용 단일 기울기 Column-ADC)

  • Ham Seog-Heon;Han Gunhee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.1 s.343
    • /
    • pp.59-64
    • /
    • 2006
  • The slope of the ramp generator in a single slope ADC(analog-to-digital converter) suffers from process and frequency variation. This variation in ramp slope causes ADC gain variation and eventually limits the performance of the ISP(image signal processing) in a CIS(CMOS image sensor) that uses the single slope ADC. This paper proposes a ramp slope BISC(built-in-self-calibration) scheme for CIS. The CIS with proposed BISC was fabricated with a $0.35{\mu}m$ process. The measurement results show that the proposed architecture effectively calibrate the ramp slope against process and clock frequency variation. The silicon area overhead is less than $0.7\%$ of the full chip area.

A 1.88-mW/Gb/s 5-Gb/s Transmitter with Digital Impedance Calibration and Equalizer (디지털 임피던스 보정과 이퀄라이저를 가진 1.88mW/Gb/s 5Gb/s 송신단)

  • Kim, Ho-Seong;Beak, Seung-Wuk;Jang, Young-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.110-116
    • /
    • 2016
  • This paper describes 1.2-V 5-Gb/s scalable low voltage signaling(SLVS) differential transmitter(TX) with a digital impedance calibration and equalizer. The proposed transmitter consists of a phase-locked loop(PLL) with 4-phase output clock, a 4-to-1 serializer, a regulator, an output driver, and an equalizer driver for improvement of the signal integrity. A pseudo random bit sequence generator is implemented for a built-in self-test. The proposed SLVS transmitter provides the output differential swing level from 80mV to 500mV. The proposed SLVS transmitter is implemented by using a 65-nm CMOS with a 1.2-V supply. The measured peak-to-peak time jitter of the implemented SLVS TX is about 46.67 ps at the data rate of 5Gb/s. Its power consumption is 1.88 mW/Gb/s.

Analysis on 3D Positioning Precision Using Mobile Mapping System Images in Photograrmmetric Perspective (사진측량 관점에서 차량측량시스템 영상을 이용한 3차원 위치의 정밀도 분석)

  • 조우석;황현덕
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.6
    • /
    • pp.431-445
    • /
    • 2003
  • In this paper, we experimentally investigated the precision of 3D positioning using 4S-Van images in photograrmmetric perspective. The 3D calibration target was built over building facade outside and was captured separately by two CCD cameras installed in 4S-Van. After then, we determined the interior orientation parameter for each CCD camera through self-calibration technique. With the interior orientation parameter computed, the bundle adjustment was performed to obtain the exterior orientation parameters simultaneously for two CCD cameras using calibration target image and object coordinates. The reverse lens distortion coefficients were computed and acquired by least squares method so as to introduce lens distortion into epipolar line. It was shown that the reverse lens distortion coefficients could transform image coordinates into lens distorted image coordinates within about 0.5 pixel. The proposed semi-automatic matching scheme incorporated with lens distorted epipolar line was implemented with scene images captured by 4S-Van in moving. The experimental results showed that the precision of 3D positioning from 4S-Van images in photograrmmetric perspective is within 2cm in the range of 20m from the camera.

Error analysis and performance test of the volumetric interferometer for three dimensional coordinate measurements (삼차원 좌표 측정을 위한 부피 간섭계의 오차분석 및 성능평가)

  • 이혁교;주지영;김승우
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.6
    • /
    • pp.521-529
    • /
    • 2002
  • We have recently proposed the new concept of a phase-measuring volumetric interferometer that enables us to accurately measure the xyz-coordinates of the probe without metrology frames. The interferometer is composed of a movable target and a fixed photo-detector array. The target is made of point diffraction sources to emit two spherical wavefronts, whose interference is monitored by an array of photo-detectors. Phase shifting is applied to obtain the precise phase values of the photo-detectors. Then the measured phases are fitted to a geometric model of multilateration so as to determine the xyz-location of the target by minimizing least square errors. The proposed interferometer has been designed and built with a volumetric uncertainty of less than 1.0 $\mu\textrm{m}$ within a cubic working volume of side 120 mm. Here, in this paper, we also present error sources, an evaluated uncertainty, and test results from the prototype system. The self-calibration of two-dimensional precision metrology stages is applied to test the performance of the interferometer.

The Small Angle Generator Based on a Laser Angle Interferometer

  • Eom, Tae-Bong;Jeong, Don-Young;Kim, Jae-Wan
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.3
    • /
    • pp.20-23
    • /
    • 2007
  • To calibrate precision autocollimators, the Korean Research Institute of Standards and Science (KRISS) has built a small angle generator using a laser interferometer. The system is based on a sine bar mechanism in which the angle is determined from the ratio of two lengths. The rotational angle is measured by the angle interferometer and the heterodyne laser interferometer detects the relative displacement of two retro-reflectors attached to the rotating arm. The distance between the two retro-reflectors of the laser angle interferometer is self-calibrated by an index table positioned on the rotating arm. The resolution of the system is 0.002 seconds, and the accuracy is better than 0.04 seconds within a measuring range of $\pm$1 degree. The small angle generator can also be used with an index table that can divide one circle into 1440 angles. The combined system can generate any angle over 360 degrees to an accuracy of 0.11 seconds.

Embedded RF Test Circuits: RF Power Detectors, RF Power Control Circuits, Directional Couplers, and 77-GHz Six-Port Reflectometer

  • Eisenstadt, William R.;Hur, Byul
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.1
    • /
    • pp.56-61
    • /
    • 2013
  • Modern integrated circuits (ICs) are becoming an integrated parts of analog, digital, and radio frequency (RF) circuits. Testing these RF circuits on a chip is an important task, not only for fabrication quality control but also for tuning RF circuit elements to fit multi-standard wireless systems. In this paper, RF test circuits suitable for embedded testing are introduced: RF power detectors, power control circuits, directional couplers, and six-port reflectometers. Various types of embedded RF power detectors are reviewed. The conventional approach and our approach for the RF power control circuits are compared. Also, embedded tunable active directional couplers are presented. Then, six-port reflectometers for embedded RF testing are introduced including a 77-GHz six-port reflectometer circuit in a 130 nm process. This circuit demonstrates successful calibrated reflection coefficient simulation results for 37 well distributed samples in a Smith chart. The details including the theory, calibration, circuit design techniques, and simulations of the 77-GHz six-port reflectometer are presented in this paper.

Implementation of 1.5Gbps Serial ATA (1.5Gbps 직렬 에이티에이 전송 칩 구현)

  • 박상봉;허정화;신영호;홍성혁;박노경
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.7
    • /
    • pp.63-70
    • /
    • 2004
  • This paper describes the link layer and physical layer of the Serial ATA which is the next generation for parallel ATA specification that defines data transfer between PC and peripheral storage devices. The link layer consists of CRC generation/error detection, 8b/10b decoding/encoding, primitive generation/detection block. For the physical layer, it includes CDR(Cock Data Recovery), transmission PLL, serializer/de-serializer. It also includes generation and receipt of OOB(Out-Of-Band) signal, impedance calibration, squelch circuit and comma detection/generation. Additionally, this chip includes TCB(Test Control Block) and BIST(Built-In Selt Test) block to ease debugging and verification. It is fabricated with 0.18${\mu}{\textrm}{m}$ standard CMOS cell library. All the function of the link layer operate properly. For the physical layer, all the blocks operate properly but the data transfer is limited to the 1.28Gbps. This is doe to the affection or parasitic elements and is verified with SPICE simulation.

Microcantilever biosensor: sensing platform, surface characterization and multiscale modeling

  • Chen, Chuin-Shan;Kuan, Shu;Chang, Tzu-Hsuan;Chou, Chia-Ching;Chang, Shu-Wei;Huang, Long-Sun
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.17-37
    • /
    • 2011
  • The microcantilever (MCL) sensor is one of the most promising platforms for next-generation label-free biosensing applications. It outperforms conventional label-free detection methods in terms of portability and parallelization. In this paper, an overview of recent advances in our understanding of the coupling between biomolecular interactions and MCL responses is given. A dual compact optical MCL sensing platform was built to enable biosensing experiments both in gas-phase environments and in solutions. The thermal bimorph effect was found to be an effective nanomanipulator for the MCL platform calibration. The study of the alkanethiol self-assembly monolayer (SAM) chain length effect revealed that 1-octanethiol ($C_8H_{17}SH$) induced a larger deflection than that from 1-dodecanethiol ($C_{12}H_{25}SH$) in solutions. Using the clinically relevant biomarker C-reactive protein (CRP), we revealed that the analytical sensitivity of the MCL reached a diagnostic level of $1{\sim}500{\mu}g/ml$ within a 7% coefficient of variation. Using grazing incident x-ray diffractometer (GIXRD) analysis, we found that the gold surface was dominated by the (111) crystalline plane. Moreover, using X-ray photoelectron spectroscopy (XPS) analysis, we confirmed that the Au-S covalent bonds occurred in SAM adsorption whereas CRP molecular bindings occurred in protein analysis. First principles density functional theory (DFT) simulations were also used to examine biomolecular adsorption mechanisms. Multiscale modeling was then developed to connect the interactions at the molecular level with the MCL mechanical response. The alkanethiol SAM chain length effect in air was successfully predicted using the multiscale scheme.