Browse > Article
http://dx.doi.org/10.12989/sss.2011.8.1.017

Microcantilever biosensor: sensing platform, surface characterization and multiscale modeling  

Chen, Chuin-Shan (Department of Civil Engineering, National Taiwan University)
Kuan, Shu (Institute of Applied Mechanics, National Taiwan University)
Chang, Tzu-Hsuan (Department of Civil Engineering, National Taiwan University)
Chou, Chia-Ching (Department of Civil Engineering, National Taiwan University)
Chang, Shu-Wei (Department of Civil Engineering, National Taiwan University)
Huang, Long-Sun (Institute of Applied Mechanics, National Taiwan University)
Publication Information
Smart Structures and Systems / v.8, no.1, 2011 , pp. 17-37 More about this Journal
Abstract
The microcantilever (MCL) sensor is one of the most promising platforms for next-generation label-free biosensing applications. It outperforms conventional label-free detection methods in terms of portability and parallelization. In this paper, an overview of recent advances in our understanding of the coupling between biomolecular interactions and MCL responses is given. A dual compact optical MCL sensing platform was built to enable biosensing experiments both in gas-phase environments and in solutions. The thermal bimorph effect was found to be an effective nanomanipulator for the MCL platform calibration. The study of the alkanethiol self-assembly monolayer (SAM) chain length effect revealed that 1-octanethiol ($C_8H_{17}SH$) induced a larger deflection than that from 1-dodecanethiol ($C_{12}H_{25}SH$) in solutions. Using the clinically relevant biomarker C-reactive protein (CRP), we revealed that the analytical sensitivity of the MCL reached a diagnostic level of $1{\sim}500{\mu}g/ml$ within a 7% coefficient of variation. Using grazing incident x-ray diffractometer (GIXRD) analysis, we found that the gold surface was dominated by the (111) crystalline plane. Moreover, using X-ray photoelectron spectroscopy (XPS) analysis, we confirmed that the Au-S covalent bonds occurred in SAM adsorption whereas CRP molecular bindings occurred in protein analysis. First principles density functional theory (DFT) simulations were also used to examine biomolecular adsorption mechanisms. Multiscale modeling was then developed to connect the interactions at the molecular level with the MCL mechanical response. The alkanethiol SAM chain length effect in air was successfully predicted using the multiscale scheme.
Keywords
microcantilever (MCL); label-free; biomolecular interaction; biosensing; self-assembly; antigen; microfluidics; x-ray photoelectron spectroscopy (XPS); multiscale modeling;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
  • Reference
1 Allen, M.P. and Tildesley, D.J. (1989), Computer Simulation of Liquids. Oxford University Press, USA.
2 Alvarez, M., Calle, A., Tamayo, J., Lechuga, L.M., Abad, A. and Montoya, A. (2003), "Development of nanomechanical biosensors for detection of the pesticide DDT", Biosens. Bioelectron., 18(5-6), 649-653.   DOI   ScienceOn
3 Barlian, A.A., Park, W.T., Mallon, J.R., Rastegar, A.J. and Pruitt, B.L. (2009), "Review: semiconductor piezoresistance for microsystems", Proceedings of the IEEE, 97(3), 513-552.   DOI
4 Barnes, J.R., Stephenson, R.J., Welland, M.E., Gerbert, Ch. and Gimzewskit, J.K. (1994), "Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device", Nature, 372, 79-81.   DOI   ScienceOn
5 Berger, R., Delamarche, E., Lang, H.P., Gerber, C., Gimzewski, J.K., Meyer, E. and Guntherodt, H.J. (1997), "Surface stress in the self-assembly of alkanethiols on gold", Science, 276, 2021-2024.   DOI
6 Braun, T., Ghatkesar, M.K., Backmann, N., Grange, W., Boulanger, P., Letellier, L., Lang, H.P., Bietsch, A., Gerber, C. and Hegner, M. (2009), "Quantitative time-resolved measurement of membrane protein-ligand interactions using microcantilever array sensors", Nat. Nanotechnol., 4, 179-185.   DOI   ScienceOn
7 Butt, H.J. (1996), "A sensitive method to measure changes in the surface stress of solids", J. Colloid Interf. Sci., 180(1), 251-260.   DOI   ScienceOn
8 Chen, C.H., Hwang, R.Z., Huang, L.S., Lin, S.M., Chen, H.C., Yang, Y.C., Lin, Y.T., Yu, S.A., Lin, Y.S., Wang, Y.H., Chou, N.K. and Lu, S.S. (2009a), "A wireless bio-MEMS sensor for C-reactive protein detection based on nanomechanics", IEEE T. Bio. Eng., 56(2), 462-470.   DOI
9 Chen, C.S., Chou, C.C. and Chang, S.W. (2009b), "Ab-initio and multiscale study of surface stresses from alkanethiolate self-assembled monolayers on gold", ISCM II & EPMESC XII, November 30-December 3, Hong Kong and Macao.
10 Cooper, E.B., Post, E.R., Griffith, S., Levitan, J., Manalis, S.R., Schmidt, M.A. and Quate, C.F. (2000), "Highresolution micromachined interferometric accelerometer", Appl. Phys. Lett., 76, 3316-3318.   DOI   ScienceOn
11 Dauksaite, V., Lorentzen, M., Besenbacher, F. and Kjems, J. (2007), "Antibody-based protein detection using piezoresistive cantilever arrays", Nanotechnology, 18(12), 125503.   DOI   ScienceOn
12 Desikan, R. Armel, S. Meyer III, H.M. Thundat, T. (2007), "Effect of chain length on nanomechanics of alkanethiol self-assembly", Nanotechnology, 18(42), 424028.   DOI   ScienceOn
13 Dhayal, B., Henne, W.A., Doorneweerd, D.D., Reifenberger, R.G. and Low, P.S. (2006), "Detection of Bacillus subtilis spores using peptide-functionalized cantilever arrays", J. Am. Chem. Soc., 128(11), 3716-3721.   DOI   ScienceOn
14 Dubois, L.H. and Nuzzo, R.G. (1992), "Synthesis, structure, and properties of model organic-surfaces", Annu. Rev. Phys. Chem., 43, 437-463.   DOI   ScienceOn
15 Fernando, S. and Austin, M.W. (2009), "Extending the deflection measurement range of interferometric microcantilever arrays", J. Microelectromech. S., 18, 480-487.   DOI
16 Fritz, J., Baller, M.K., Lang, H.P., Rothuizen, H., Vettiger, P., Meyer, E., Guntherodt, H.J., Gerber, Ch. and Gimzewski, J.K. (2000a), "Translating biomolecular recognition into nanomechanics", Science, 288, 316-318.   DOI   ScienceOn
17 Fritz, J., Baller, M.K., Lang, H.P., Strunz, T., Meyer, E., Guntherodt, H.J., Delamarche, E., Gerber, Ch. and Gimzewski, J.K. (2000b), "Stress at the solid-liquid interface of self-assembled monolayers on gold investigated with a nanomechanical sensor", Langmuir, 16(25), 9694-9696.   DOI   ScienceOn
18 Godin, M., Williams, P.J., Tabard-Cossa, V., Laroche, O., Beaulieu, L.Y., Lennox, R.B. and Grutter, P. (2004), "Surface stress, kinetics, and structure of alkanethiol self-assembled monolayers", Langmuir, 20(17), 7090-7096.   DOI   ScienceOn
19 Gottschalk, J. and Hammer, B. (2002), "A density functional theory study of the adsorption of sulfur, mercapto, and methylthiolate on Au(111)", J. Chem. Phys., 116, 784.   DOI   ScienceOn
20 Graf, N., Yegen, E., Gross, T., Lippitz, A., Weigel, W., Krakert, S., Terfort, A. and Unger, W.E.S. (2009), "XPS and NEXAFS studies of aliphatic and aromatic amine species on functionalized surfaces", Surf. Sci., 603(18), 2849-2860.   DOI   ScienceOn
21 Hansen, K.M., Ji, H.F., Wu, G.H., Datar, R., Cote, R., Majumdar, A. and Thundat, T. (2001), "Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches", Anal. Chem., 73(7), 1567-1571.   DOI   ScienceOn
22 Heath, J.R., Davis, M.E. and Hood, L. (2009), "Nanomedicine targets cancer", Sci. Am., 300(2), 44-51.   DOI   ScienceOn
23 Ibach, H. (1997), "The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures", Surf. Sci. Rep., 29(5-6), 195-263.   DOI   ScienceOn
24 Ibach, H. (2006), Physics of Surfaces and Interfaces. Springer.
25 Ji, H.F., Hansen, K.M., Hu, Z. and Thundat, T. (2001), "Detection of pH variation using modified microcantilever sensors", Sensor. Actuat. B-Chem., 72(3), 233-238.   DOI   ScienceOn
26 Johnsson, B., Lofas, S. and Lindquist, G. (1991), "Immobilization of proteins to a carboxymethyldextranmodified gold surface-for biospecific interaction analysis in surface-plasmon resonance sensors", Anal. Biochem., 198(2), 268- 277.   DOI   ScienceOn
27 Kresse, G. and Furthmüller, J. (1996), "Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set", Phys. Rev. B, 54(16), 11169-11186.   DOI   ScienceOn
28 Lee, S.Y., Noh, J., Ito, E., Lee, H. and Hara, M. (2003), "Solvent effect on formation of cysteamine self-assembled monolayers on Au(111)", Jpn. J. Appl. Phys., 42(1), 236-241.   DOI
29 Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G. and Whitesides, G.M. (2005), "Self-assembled monolayers of thiolates on metals as a form of nanotechnology", Chem. Rev.,105(4), 1103-1169.   DOI   ScienceOn
30 Marie, R., Jensenius, H., Thaysen, J., Christensen, C.B. and Boisen, A. (2002), "Adsorption kinetics and mechanical properties of thiol-modified DNA-oligos on gold investigated by microcantilever sensors", Ultramicroscopy, 91(1-4), 29-36   DOI
31 Mukhopadhyay, R., Lorentzen, M., Kjems, J. and Besenbacher, F. (2005a), "Nanomechanical sensing of DNA sequences using piezoresistive cantilevers", Langmuir, 21(18), 8400-8408.   DOI   ScienceOn
32 Mertens, J., Calleja, M., Ramos, D., Taryn, A. and Tamayo, J. (2007), "Role of the gold film nanostructure on the nanomechanical response of microcantilever sensors", J. Appl. Phys., 101(3), 034904.   DOI   ScienceOn
33 Moulder, J.F., Chastain, J. and King, R.C. (1995), "Handbook of x-ray photoelectron spectroscopy : a reference book of standard spectra for identification and interpretation of XPS data", Physical Electronics, Eden Prairie, Minn.
34 Moulin, A.M., O'Shea, S.J. and Welland, M.E. (2000), "Microcantilever-based biosensors", Ultramicroscopy, 82(1-4), 23-31.   DOI
35 Mukhopadhyay, R., Sumbayev, V.V., Lorentzen, M., Kjems, J., Andreasen, P.A. and Besenbacher, F. (2005b), "Cantilever sensor for nanomechanical detection of specific protein conformations", Nano Lett., 5(12), 2385- 2388.   DOI   ScienceOn
36 Nagoya, A. and Morikawa, Y. (2007), "Adsorption states of methylthiolate on the Au(111) surface", J. Phys- Condens. Mat., 19(36), 365245.   DOI   ScienceOn
37 Ndieyira, J.W., Watari, M., Barrera, A.D., Zhou, D., Vogtli, M., Batchelor, M., Cooper, M.A., Strunz, T., Horton, M.A., Abell, C., Rayment, T., Aeppli, G. and McKendry, R.A. (2008), "Nanomechanical detection of antibiotic mucopeptide binding in a model for superbug drug resistance", Nat. Nanotechnol., 3, 691-696.   DOI
38 Pasceri, V., Willerson, J.T. and Yeh, E.T.H. (2000), "Direct proinflammatory effect of C-reactive protein on human endothelial cells", Circulation, 102, 2165-2168.   DOI   ScienceOn
39 Pei, J.H. Tian, F. and Thundat, T. (2004), "Glucose biosensor based on the microcantilever", Anal. Chem., 76, 292-297.   DOI   ScienceOn
40 Raiteri, R., Butt, H.J. and Grattarola, M. (2000), "Changes in surface stress at the liquid/solid interface measured with a microcantilever", Electrochim. Acta, 46(2-3), 157-163.   DOI   ScienceOn
41 Ron, H., Matlis, S. and Rubinstein, I. (1998), "Self-assembled monolayers on oxidized metals. 2. Gold surface oxidative pretreatment, monolayer properties, and depression formation", Langmuir, 14(5), 1116-1121.   DOI   ScienceOn
42 Raorane, D., Lim, S.H.S. and Majumdar, A. (2008a), "Nanomechanical assay to investigate the selectivity of binding interactions between volatile benzene derivatives", Nano Lett., 8(8), 2229-2235.   DOI   ScienceOn
43 Raorane, D.A., Lim, M.D., Chen, F.F., Craik, C.S. and Majumdar, A. (2008b), "Quantitative and label-free technique for measuring protease activity and inhibition using a microfluidic cantilever array", Nano Lett., 8(9), 2968-2974.   DOI   ScienceOn
44 Ridker, P.M., Rifai, N., Rose, L., Buring, J.E. and Cook, N.R. (2002), "Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events", New Eng. J. Med., 347, 1557-1565.   DOI   ScienceOn
45 Sambrook, J., Russell, D.W. (2001), "Molecular cloning: a laboratory manual", Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
46 Schultz, J., Mrksich, M., Bhatia, S.N., Brady, D.J., Ricco, A.J., Walt, D.R. and Wilkins, C.L. (2004), "International research and development in biosensing", WTEC Panel Report, 283 pages.
47 Shekhawat, G., Tark, S.H., Dravid, V.P. (2006), "MOSFET-embedded microcantilevers for measuring deflection in biomolecular sensors", Science, 311, 1592-1595.   DOI
48 Sholl, D. and Steckel, J.A. (2009), Density Functional Theory: A Practical Introduction. Wiley-Interscience, USA.
49 Tark, S.H., Srivastava, A., Chou, S., Shekhawat, G. and Dravid, V.P. (2009), "Nanomechanoelectronic signal transduction scheme with metal-oxide-semiconductor field-effect transistor-embedded microcantilevers", Appl. Phys. Lett., 94, 104101.   DOI   ScienceOn
50 Thundat, T., Oden, P.I. and Warmack, R.J. (1997), "Microcantilever sensors", Micro. Thermophys. Eng., 1(3), 185-199.   DOI   ScienceOn
51 Timoshenko, S.P. (1925), "Analysis of bi-metal thermostats", J. Opt. Soc. Am., 11, 233-255.   DOI
52 Weeks, B.L., Camarero, J., Noy, A., Miller, A.E., Stanker, L. and De Yoreo, J.J. (2003), "A microcantileverbased pathogen detector", Scanning, 25, 297-299.
53 Timoshenko, S.P. (1970), Theory of Elasticity , 3rd Ed., McGraw-Hill Companies.
54 Tummala, R.R. (2006), "Moore's law meets its match", IEEE Spectrum, 43(6), 44-49.   DOI   ScienceOn
55 Wee, K.W., Kang, G.Y., Park, J., Kang, J.Y., Yoon, D.S., Park, J.H. and Kim, T.S. (2005), "Novel electrical detection of label-free disease marker proteins using piezoresistive self-sensing micro-cantilevers", Biosens. Bioelectron., 20, 1932-1938.   DOI   ScienceOn
56 Wu, G.H., Datar, R.H., Hansen, K.M., Thundat, T., Cote, R.J. and Majumdar, A. (2001a), "Bioassay of prostatespecific antigen (PSA) using microcantilevers", Nature Biotechnology, 19, 856-860.   DOI   ScienceOn
57 Wu, G.H., Ji, H.F., Hansen, K., Thundat, T., Datar, R., Cote, R., Hagan, M.F., Chakraborty, A.K. and Majumdar, A. (2001b), "Origin of nanomechanical cantilever motion generated from biomolecular interactions", Proceedings of the National Academy of Sciences of the United States of America, 98, 1560-1564.   DOI   ScienceOn
58 Yang, Y.W. and Fan, L.J. (2002), "High-resolution XPS study of decanethiol on Au(111): Single sulfur-gold bonding interaction", Langmuir, 18(4), 1157-1164.   DOI   ScienceOn
59 Yang, Y.M., Ji, H.F. and Thundat, T. (2003), "Nerve agents detection using a Cu2+/L-cysteine bilayer-coated Microcantilever", J. Am. Chem. Soc., 125(5), 1124-1125.   DOI   ScienceOn
60 Yourdshahyan, Y. and Rappe and Andrew M. (2002), "Structure and energetics of alkanethiol adsorption on the Au(111) surface", J. Chem. Phys., 117(2), 825-833.   DOI   ScienceOn
61 Zhang, J., Lang, H.P., Huber, F., Bietsch, A., Grange, W., Certa, U., McKendry, R., Guntgerodt, H.J., Hegner, M. and Gerber, Ch. (2006), "Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA", Nature Nanotechnology, 1, 214-220.   DOI   ScienceOn
62 Zuo, G.M., Li, X.X., Zhang, Z.X., Yang, T.T., Wang, Y.L., Cheng, Z.X. and Feng, S.L. (2007), "Dual-SAM functionalization on integrated cantilevers for specific trace-explosive sensing and non-specific adsorption suppression", Nanotechnology, 18(25), 255501.   DOI   ScienceOn