• Title/Summary/Keyword: Brassica pekinensis

Search Result 147, Processing Time 0.029 seconds

The continuous application effect of the food waste composts on the cultivated upland soils and plants (밭에서 음식물류폐기물 활용 퇴비의 연용이 토양 및 작물에 미치는 영향)

  • Kwon, Soon-Ik;So, Kyu-Ho;Hong, Seung-Gil;Kim, Gun-Yeob;Seong, Ki-Seog;Park, Woo-Kyun;Kim, Kwon-Rae;Lee, Deog-Bae;Jung, Kwang-Yong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.3
    • /
    • pp.71-81
    • /
    • 2009
  • Food waste has been actively used as a composting material in order to reduce the environmental pollution load and to enhance the recycling of resources. In this study, the longterm effects of continuous application of food waste compost to soils on both the crop production and the soil properties were examined to ensure the safety of food waste compost in agricultural use. In addition, we collected the preliminary data for establishing standard application rate of food waste compost for agricultural utilization. Based on conventional nitrogen application rate of chemical fertilizer for crop cultivation, pig manure compost $(24g\;N\;kg^{-1}$, $8g\;P_2O_5\;kg^{-1}$, and $10.4g\;K_2O\;kg^{-1})$ and food waste compost ($20g\;N\;kg^{-1}$, $20.1g\;P_2O_5\;kg^{-1}$, and $6.5g\;K_2O\;kg^{-1}$) were applied to the upland soil in $2{\times}2{\times}2m$ lysimeter in which lettuce (Lactuca sativa var. crispa), Chinese cabbage (Brassica campestris subsp. napus var. pekinensis), red pepper (Capsicum annuum), and potato (Solanum tuberosum) were grown continuously. The crops grown in soils to which food waste compost applied showed better growth responses than the control, whereas some variations were observed in the crops grown in chemical fertilizer treated soils. Continuous application of food waste compost increased the contents of organic matter, nitrogen, and phosphorus, which resulted in improving soil aeration.

  • PDF

Effect of Soil Water Content on Growth, Photosynthetic Rate, and Stomatal Conductance of Kimchi Cabbage at the Early Growth Stage after Transplanting (정식 후 초기 생장기 배추의 생장, 광합성 속도 및 기공전도도에 미치는 토양수분의 영향)

  • Kim, Sung Kyeom;Lee, Hee Ju;Lee, Hee Su;Mun, Boheum;Lee, Sang Gyu
    • Journal of Bio-Environment Control
    • /
    • v.26 no.3
    • /
    • pp.151-157
    • /
    • 2017
  • The objectives of this study were to determine the impact of soil water content on the growth, stomatal conductance, and photosynthesis of Kimchi cabbage and to evaluate proper parameters for development of growth models. There were five levels of irrigation amount treatments (0, 200, 300, 400, and 500 mL/d/plant) and those were commenced at one day after transplanting (DAT). We measured soil water content, stomatal conductance, photosynthesis characteristics, and the A-Ci curve. The growth of Kimchi cabbage as affected by irrigation amount was evaluated at 38 days after transplanting, however, the growth with 0 and 200 mL/d/plant irrigation amount treatments measured at 29 DAT. The relationship between soil water content and stomatal conductance was highly correlated ($r^2=0.999$) and the function represented by y = 6097.4x - 4.2984. The stomatal conductance of Kimchi cabbage leaves showed $300mmol{\cdot}m^{-2}{\cdot}s^{-1}$ when the soil water content was below $0.05m^3/m^3$. The stomatal conductance was rapidly decreased by scarcity of soil moisture. A-Ci curve indicated normal curve in fully irrigation treatment (500 mL/d/plant), however, $CO_2$ couldn't diffuse through the intercellular Kimchi cabbage leaves treated with 0 mL/d/plant. The dry weight of full irrigation treatment was greater approximately 6.8 times than that of deficit irrigation (0 mL/d/plant). In addition, leaf area index showed a logarithmic function (y = 16.573 + 3.398 ln x) with soil water content and that of R-squared represents 0.913. Results indicated that the soil water content was highly correlated with stomatal conductance and leaf area index. Indeed, the scarcity soil moisture reduced photosynthesis and retarded growth.

Effect and Optimum Quantities of N and K for Chinese Cabbage (배추에 대(對)한 N-K의 효과 및 적량(適量)에 관(關)한 연구(硏究))

  • Oh, Wang-Kun;Han, Sang-Kyung;Kim, Seong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.14 no.4
    • /
    • pp.219-223
    • /
    • 1982
  • The results of study on the yield and absorption of N and K applied to the chinese cabbage (Brassica pekinensis) which was grown at comparatively infertile red-yellow soil in the fall of 1980 are summerized as below. 1. The optimum quantities of potash to be applied for the autumn chinese cabbage is suggested in the range of 15kg-20kg/10a, $K_2O$. 2. Combined treatments of N and K showed a positive interaction by promoting the effect of the other element. The increase of Nitrogen absorption from the additionally applied 10kgs of nitrogen on top of 15kg N/10a showed only 16 per cent at potash minus plot, while that of potash applied plot showed 60 per cent. The cabbage yield increase therefor, at high rate of nitrogen only was 1,700kgs per 10 are over low rate of nitrogen, while high nitrogen plus potash treatment produced additional 2,200kgs over the low rates of N and K. 3. Additional 10kgs of nitrogen applied on top of 15kgs N/10a resulted in increasing soil potassium uptake; 4kgs of soil potassium was additionally absorbed at potash applied plot and 6.5kgs at potash minus plot. 4. Utilization of applied potash was greater at low rates of N, and K application (each 15kgs of N and $K_2O$ per 10a) where 77 per cent of applied potash was utilized, while high rates of N and K application (each 25kgs of N and $K_2O$ per 10a) showed 44 per cent of potash utilization rate. Lower utilization of applied potash at high rate of nitrogen application is due probably to greater uptake of soil potassium. 5. N and K contents in the chinese cabbage are 0.17-0.20% and 0.35-0.43% respectively and these were not statistically correlated with the yields.

  • PDF

Growth, Photosynthesis and Chlorophyll Fluorescence of Chinese Cabbage in Response to High Temperature (고온 스트레스에 대한 배추의 생장과 광합성 및 엽록소형광 반응)

  • Oh, Soonja;Moon, Kyung Hwan;Son, In-Chang;Song, Eun Young;Moon, Young Eel;Koh, Seok Chan
    • Horticultural Science & Technology
    • /
    • v.32 no.3
    • /
    • pp.318-329
    • /
    • 2014
  • In order to gain insight into the physiological responses of plants to high temperature stress, the effects of temperature on Chinese cabbage (Brassica campestris subsp. napus var. pekinensis cv. Detong) were investigated through analyses of photosynthesis and chlorophyll fluorescence under 3 different temperatures in the temperature gradient tunnel. Growth (leaf length and number of leaves) during the rosette stage was greater at ambient $+4^{\circ}C$ and ambient $+7^{\circ}C$ temperatures than at ambient temperature. Photosynthetic $CO_2$ fixation rates of Chinese cabbage grown under the different temperatures did not differ significantly. However, dark respiration rate was significantly higher in the cabbage that developed under ambient temperature relative to elevated temperature. Furthermore, elevated growth temperature increased transpiration rate and stomatal conductance resulting in an overall decrease of water use efficiency. The chlorophyll a fluorescence transient was also considerably affected by high temperature stress; the fluorescence yield $F_J$, $F_I$, and $F_P$ decreased considerably at ambient $+4^{\circ}C$ and ambient $+7^{\circ}C$ temperatures, with induction of $F_K$ and decrease of $F_V/F_O$. The values of RC/CS, ABS/CS, TRo/CS, and ETo/CS decreased considerably, while DIo/CS increased with increased growth temperature. The symptoms of soft-rot disease were observed in the inner part of the cabbage heads after 7, 9, and/or 10 weeks of cultivation at ambient $+4^{\circ}C$ and ambient $+7^{\circ}C$ temperatures, but not in the cabbage heads growing at ambient temperature. These results show that Chinese cabbage could be negatively affected by high temperature under a future climate change scenario. Therefore, to maintain the high productivity and quality of Chinese cabbage, it may be necessary to develop new high temperature tolerant cultivars or to markedly improve cropping systems. In addition, it would be possible to use the non-invasive fluorescence parameters $F_O$, $F_V/F_M$, and $F_V/F_O$, as well as $F_K$, $M_O$, $S_M$, RC/CS, ETo/CS, $PI_{abs}$, and $SFI_{abs}$ (which were selected in this study), to quantitatively determine the physiological status of plants in response to high temperature stresses.

Changes in Total Glucosinolates Levels and Physico-Chemical Properties of Kimchi using Korean Chinese Cabbage of Harvest Time according to Various Storage Conditions (수확기간별 배추를 이용한 김치의 저장조건에 따른 Total Glucosinolates 함량 및 이화학적 변화)

  • Jung, Ji-In;Hong, Eun-Young;Kim, Mee-Kyung;Jung, Ji-Won;Oh, Ji-Young;Kwon, Min-Soo;Lee, Kang-Pyo;Kim, Gun-Hee
    • Food Science and Preservation
    • /
    • v.16 no.5
    • /
    • pp.612-617
    • /
    • 2009
  • Kimchi is a traditional pickled food using Korean Chinese cabbage(Brassica campestris var. pekinensis) and also containing phytochemicals, glucosinolates. This study was carried out to investigate the changes in the total glucosinolates levels of Kimchi using Korean Chinese cabbage of harvest time(June-July, August-September, October-November, December-April, May) according to storage temperature(4, 10, $15^{\circ}C$) and storage duration(0, 1, 3, 5, 7, 10, 14, 21 and 28 day). For determination of glucosinolates, 50g of Baechu kimchi was used for analytical sample preparation provided with an anion exchanges column and measured by UV-visible Spectrophotometer. The highest contents of water occurred at August-September during fermentation. At 15, 10, $4^{\circ}C$, the pH in all of seasonal variation of Baechu kimchi declined, especially from 0 to 3 days at $15^{\circ}C$, from 0 to 7 days at $10^{\circ}C$ and from 0 to 14 days at $4^{\circ}C$. At that storage, the total glucosinolates levels in all of seasonal variation of Kimchi declined in storage temperature. Baechu kimchi at August-September showed the highest total glucosinolates levels. Also total glucosinolates levels decreased as storage period increased. Baechu kimchi fermented at $15^{\circ}C$ for 7days decreased rapidly and reached to the lowest at the 1day(ranged from $10.3{\pm}0.70$ to $23.4{\pm}0.37{\mu}mol/g$ dry weight). At $10^{\circ}C$ for 14days were ranged from $12.9{\pm}0.29$ to $33.7{\pm}1.81{\mu}mol/g$ dry weight before fermentation and decreased rapidly at the 3day(ranged from $9.5{\pm}0.54$ to $20.5{\pm}0.61{\mu}mol/g$ dry weight). Total glucosinolates levels of Baechu kimchi fermented at $4^{\circ}C$ for 28days decreased rapidly during 7day(ranged from $9.9{\pm}0.78$ to $21.1{\pm}0.96{\mu}mol/g$ dry weight) and then slowly decreased. Therefore the total glucosinolates levels decreased during storage time and depended on harvest time and storage conditions of Kimchi.

Stable Inheritance of an Integrated Transgene and Its Expression in Phenylethylisothiocyanate-Enriched Transgenic Chinese cabbage (Phenylethylisothiocyanate 함량이 증진된 형질전환 배추에서의 도입유전자의 후대 유전 및 발현 안정성 검정)

  • Park, Ji-Hyun;Kim, Hyoung-Seok;Lee, Gi-Ho;Yu, Jae-Gyung;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.112-121
    • /
    • 2016
  • Development of genetically-modified (GM) crops enables the introduction of new traits to the plant to confer characteristics such as disease resistance, herbicide resistance and human health-promoting bioactivity. Successful commercialization of newly developed GM crops requires stable inheritance of integrated T-DNA and newly introduced traits through the multiple generations. This study was carried out to confirm the stable inheritance of the integrated T-DNA in $T_1$ and $T_2$ transgenic Chinese cabbage (Brassica rapa ssp. pekinensis) that was genetically modified to increase concentrations of phenylethylisothiocyanate (PEITC), which is a potential anti-carcinogenic phytochemical. For this purpose, the IGA 1-3 ($T_1$ generation) and IGA 1-3-5 ($T_2$ generation) lines were selected by PCR and a IGA 1-3 transgenic plant ($T_1$ generation) was analyzed to confirm the T-DNA insertion site in the Chinese cabbage genome by VA-TAIL PCR. The results of this study showed that the introduced T-DNA in IGA 1 line was stably inherited to the next generations without any variations in terms of the structure of the transgenes, and this line also showed the expected transgene function that resulted in increased concentration of PEITC through the multiple generations. Finally, we confirmed the increased QR activity in IGA 1 $T_1$ and $T_2$ transgenic lines, which indicates an enhanced potential anti-carcinogenic bioactivity and its stable inheritance in IGA1 $T_1$ and $T_2$ transgenic lines.

Screening of Resistance of Introduced Kimchi Cabbage (Brassica rapa subsp. pekinensis) Germplasm from Asian areas to Plasmodiophora brassicae Isolates Collected in Korea. (배추 아시아 도입 유전자원의 국내 재배포장에서 수집한 뿌리혹병 균주에 대한 저항성 반응)

  • Jeon, Young-Ah;Lee, Ho-Sun;Rhee, Ju-Hee;Lee, Jae-Eun;Ko, Ho-Cheol;Aseefa, Awraris Derbie;Sung, Jung-Sook;Hur, On-sook;Ro, Na-young;Lee, Sok-Young
    • Journal of the Korean Society of International Agriculture
    • /
    • v.30 no.4
    • /
    • pp.305-312
    • /
    • 2018
  • Clubroot, caused by Plasmodiophora brassicae, is one of the most crucial disease in Kimchi cabbage. Screening disease resistant genetic resources is necessary to develop disease resistant cultivars and conduct related research. We have evaluated the development of clubroot to the 120 genetic resources of Kimchi cabbage introduced from World Vegetable Center and five Asian countries using isolate of Plasmodiophora brassicae collected in Haenam fields in Jeollanam-do Province, Rep. of Korea. This isolate was determined race 2 using differential varieties reported by Kim et al., 2016. IT100384 and IT305623 showed strong resistance, lower than disease index (DI) 1.0. IT100385, 100439, and 135407 showed moderate resistance (1.0