Browse > Article
http://dx.doi.org/10.12972/kjhst.20160013

Stable Inheritance of an Integrated Transgene and Its Expression in Phenylethylisothiocyanate-Enriched Transgenic Chinese cabbage  

Park, Ji-Hyun (Department of Horticultural Biotechnology, Kyunghee University)
Kim, Hyoung-Seok (Korea Institute of Science and Technology Gangneung Institute)
Lee, Gi-Ho (Department of Horticultural Biotechnology, Kyunghee University)
Yu, Jae-Gyung (Department of Horticultural Biotechnology, Kyunghee University)
Park, Young-Doo (Department of Horticultural Biotechnology, Kyunghee University)
Publication Information
Horticultural Science & Technology / v.34, no.1, 2016 , pp. 112-121 More about this Journal
Abstract
Development of genetically-modified (GM) crops enables the introduction of new traits to the plant to confer characteristics such as disease resistance, herbicide resistance and human health-promoting bioactivity. Successful commercialization of newly developed GM crops requires stable inheritance of integrated T-DNA and newly introduced traits through the multiple generations. This study was carried out to confirm the stable inheritance of the integrated T-DNA in $T_1$ and $T_2$ transgenic Chinese cabbage (Brassica rapa ssp. pekinensis) that was genetically modified to increase concentrations of phenylethylisothiocyanate (PEITC), which is a potential anti-carcinogenic phytochemical. For this purpose, the IGA 1-3 ($T_1$ generation) and IGA 1-3-5 ($T_2$ generation) lines were selected by PCR and a IGA 1-3 transgenic plant ($T_1$ generation) was analyzed to confirm the T-DNA insertion site in the Chinese cabbage genome by VA-TAIL PCR. The results of this study showed that the introduced T-DNA in IGA 1 line was stably inherited to the next generations without any variations in terms of the structure of the transgenes, and this line also showed the expected transgene function that resulted in increased concentration of PEITC through the multiple generations. Finally, we confirmed the increased QR activity in IGA 1 $T_1$ and $T_2$ transgenic lines, which indicates an enhanced potential anti-carcinogenic bioactivity and its stable inheritance in IGA1 $T_1$ and $T_2$ transgenic lines.
Keywords
flanking DNA sequence; glutathione S-transferase; integrated T-DNA; quinone reductase activity;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Benson, A.M., M.J. Hunkeler, and P. Talalay. 1980. Increase of NAD(P)H:quinone reductase by dietary antioxidants: possible role in protection against carcinogenesis and toxicity. Proc. Natl. Acad. Sci. USA. 77:5216-5220.   DOI
2 Bhalla, P.L. Genetic engineering of wheat-current challenges and opportunities. 2006. Trends biotechnol. 24:305-311.   DOI
3 Brenda A.L., N.S. Prakash, M. Way, M.T. Mann, T.M. Spencer, and R.S. Boddupalli. 2009. Enhanced single copy integration events in corn via particle bombardment using low quantities of DNA. Transgenic Res. 18:831-840.   DOI
4 Chen, S., J. Zhang, H. Pu, A. Shen, X, Zhou, W. Long, M. Hu, and C. Qi. 2012. Analysis of insertion copy number and integration site of T-DNA in the genome of transgenic high oelic rapeseed (L.). Plant Gene Trait 2:15-22.
5 Dai, S., P. Zheng, P. Marmey, S. Zhang, W. Tian, W., S. Chen, R.N. Beachy, and C. Fauquet. 2001. Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Mol. Breed. 7:25-33.   DOI
6 Iyer, L.M., S.P. Kumpatla, M.B. Chandrasekharan, and T.C Hall. 2000. Transgene silencing in monocots. Springer Netherlands 43:323-346.   DOI
7 Kim, J.S., J. Kim, T.H. Lee, K.M. Jun, T.H. Kim, Y.H. Kim, H.M. Park, J.S. Jeon, G. An, U.H. Yoon, B.H. Nahm, and Y.K. Kim. 2012. FSTVAL: a new web tool to validate bulk flanking sequence tags. Plant Methods 8:19.   DOI
8 Ku, K.M., E.H. Jeffery, and J.A. Juvik. 2014. Optimization of methyl jasmonate application to broccoli florets to enhance health‐promoting phytochemical content. J. Sci. Food Agriculture. 94:2090-2096.   DOI
9 Kumpatla, S.P., M.B. Chandrasekharan, L.M. Iyer, G. Li, T.C. Hall. 1998. Genome intruder scanning and modulation systems and transgene silencing. Trends Plant Sci. 3:97-104.   DOI
10 Liu, Y. and R. Whittier. 1995. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25:674-681.   DOI
11 Liu, Y.G. and Y. Chen. 2007. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques 43:649-656.   DOI
12 Lee, G.H, J.G. Yu, and Y.D. Park. 2015. Development of an effective PCR technique for analyzing T-DNA integration sites in Brassica species and its application. Korean J. Hortic. Sci. Technol. 33.242-250.
13 Matzke, M. A. and A.J.M. Matzke. 1995. How and why do plants inactivate homologous (trans) genes?. Plant Physiol. 107:679-685.   DOI
14 Park, J.H., S.J. Lee, B.R. Kim, E.T. Woo, J.S. Lee, E.H. Han, Y.H. Lee, and Y.D. Park. 2011. Isolation of myrosinase and glutathione S-transferase genes and transformation of these genes to develop phenylethylisothiocyanate enriching Chinese cabbage. Korean J. Hortic. Sci. Technol. 29:623-632.
15 Pla, M., J.L. La Paz, and C. Vicient. 2012. Insert stability and transgenic plant risk. Encyclopedia Biotechnol. Agriculture Food.
16 Qin, Y., H.I. Ahn, S.Y. Park, M.H. Lim, H.J. Woo, K.S. Shin, J.H. Lee, H.S. Cho, S.H. Baek, S.K. Park and S.J. Kweon. 2014. T-DNA inheritance stability of resveratrol rice Iksan526 over multi-generations. Plant Breed. Biotechnol. 2:268-275.   DOI
17 Shou, H., B.R. Frame, S.A. Whitham, and K. Wang. 2004. Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation. Mol. Breed. 13:201-208.   DOI
18 Stoger, E., J.K. Ma, R. Fischer, and P. Christou. 2005. Sowing the seeds of success: pharmaceutical proteins from plants. Curr. Opin. Biotechnol. 16:167-173.   DOI
19 Vain, P., B. Worland, A. Kohli, J.W. Snape, P. Christou, G.C. Allen, and W.F. Thompson. 1999. Matrix attachment regions increase transgene expression levels and stability in transgenic rice plants and their progeny. Plant J. 18:233-242.   DOI
20 Vaucheret, H., C. Beclin, T. Elmayan, F. Feuerbach, C. Godon, J.B. Morel, P. Mourrain, J.C. Palauqui, and S. Vernhettes. 1998. Transgene‐induced gene silencing in plants. Plant J. 16:651-659.   DOI
21 Wang, X., H. Wang, J. Wang, R. Sun, J. Wu, S. Liu, Y. Bai, J.H. Mun, I. Bancroft, F. Cheng, S. Huang, X. Li, W. Hua, J. Wang, X. Wang, M. Freeling, J.C. Pires, A.H. Paterson, B. Chalhoub, B. Wang, A. Hayward, A.G. Sharpe, B.S. Park, B. Weisshaar, B. Liu, B. Li, B. B. Liu, C. Tong, C. Song, C. Duran, C. Peng, C. Geng, C. Koh, C. Lin, D. Edwards, D. Mu, D. Shen, E. Soumpourou, F. Li, F. Fraser, G. Conant, G. Lassalle, G.J. King, G. Bonnema, H. Tang, H. Wang, H. Belcram, H. Zhou, H. Hirakawa, H. Abe, H. Guo, H. Wang, H. Jin, I.A. Parkin, J. Batley, J.S. Kim, J. Just, J. Li, J. Xu, J. Deng, J.A. Kim, J. Li, J. Yu, J. Meng, J. Wang, J. Min, J. Poulain, J. Wang, K. Hatakeyama, K. Wu, L. Wang, L. Fang, M. Trick, M.G. Links, M/ Zhao, M. Jin, N. Ramchiary, N. Drou, P.J. Berkman, Q. Cai, Q. Huang, R. Li, S. Tabata, S. Cheng, S. Zhang, S. Zhang, S. Huang, S. Sato, S. Sun, S.J. Kwon, S.R. Choi, T.H. Lee, W. Fan, X. Zhao, X. Tan, X. Xu, Y. Wang, Y. Qiu, Y. Yin, Y. Li, Y. Du, Y. Liao, Y. Lim, Y. Narusaka, Y. Wang, Z. Wang, Z. Li, Z. Wang, Z. Xiong, Z. Zhang and H. Abe. 2011. The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet. 43:1035-1039.   DOI
22 Yu, J.G., G. H. Lee, J.S. Kim, and Y.D. Park. 2010. An insertional mutagenesis system for analyzing the Chinese cabbage genome using Agrobacterium T‐DNA. Molecules and Cells 29:267-275.   DOI
23 Yu, J.G., G.H. Lee, J.H. Park, and Y.D. Park. 2014. Characterization and gene co-expression network analysis of a salt tolerance-related gene, BrSSR, in Brassica rapa. Korean J. Hortic. Sci. Technol. 32:845-852.   DOI