DOI QR코드

DOI QR Code

Effect of Soil Water Content on Growth, Photosynthetic Rate, and Stomatal Conductance of Kimchi Cabbage at the Early Growth Stage after Transplanting

정식 후 초기 생장기 배추의 생장, 광합성 속도 및 기공전도도에 미치는 토양수분의 영향

  • Kim, Sung Kyeom (Vegetable Research Division, National Institute of Horticultural & Herbal Science) ;
  • Lee, Hee Ju (Vegetable Research Division, National Institute of Horticultural & Herbal Science) ;
  • Lee, Hee Su (Vegetable Research Division, National Institute of Horticultural & Herbal Science) ;
  • Mun, Boheum (Vegetable Research Division, National Institute of Horticultural & Herbal Science) ;
  • Lee, Sang Gyu (Vegetable Research Division, National Institute of Horticultural & Herbal Science)
  • 김성겸 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 이희주 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 이희수 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 문보흠 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 이상규 (농촌진흥청 국립원예특작과학원 채소과)
  • Received : 2017.02.06
  • Accepted : 2017.06.09
  • Published : 2017.07.31

Abstract

The objectives of this study were to determine the impact of soil water content on the growth, stomatal conductance, and photosynthesis of Kimchi cabbage and to evaluate proper parameters for development of growth models. There were five levels of irrigation amount treatments (0, 200, 300, 400, and 500 mL/d/plant) and those were commenced at one day after transplanting (DAT). We measured soil water content, stomatal conductance, photosynthesis characteristics, and the A-Ci curve. The growth of Kimchi cabbage as affected by irrigation amount was evaluated at 38 days after transplanting, however, the growth with 0 and 200 mL/d/plant irrigation amount treatments measured at 29 DAT. The relationship between soil water content and stomatal conductance was highly correlated ($r^2=0.999$) and the function represented by y = 6097.4x - 4.2984. The stomatal conductance of Kimchi cabbage leaves showed $300mmol{\cdot}m^{-2}{\cdot}s^{-1}$ when the soil water content was below $0.05m^3/m^3$. The stomatal conductance was rapidly decreased by scarcity of soil moisture. A-Ci curve indicated normal curve in fully irrigation treatment (500 mL/d/plant), however, $CO_2$ couldn't diffuse through the intercellular Kimchi cabbage leaves treated with 0 mL/d/plant. The dry weight of full irrigation treatment was greater approximately 6.8 times than that of deficit irrigation (0 mL/d/plant). In addition, leaf area index showed a logarithmic function (y = 16.573 + 3.398 ln x) with soil water content and that of R-squared represents 0.913. Results indicated that the soil water content was highly correlated with stomatal conductance and leaf area index. Indeed, the scarcity soil moisture reduced photosynthesis and retarded growth.

본 연구는 정식 후 토양의 수분 함량에 따른 배추의 생장과 토양 수분에 따른 배추의 생리 반응 모델 개발을 위한 유효 매개변수를 알아보고자 수행되었다. 처리는 5개 수준으로 각각 0, 200, 300, 400 및 500mL/d/plant로 매일 1회 관수하여 토양 수분 함량 차이로 구분하였다. 토양수분과 기공전도도를 정식 후 10일부터 6일 간격으로 총 5회 측정하였으며(단, 0과 200mL/d/plant 처리구는 총 3회 측정), 광합성기구 활성을 알아보고자 정식 후 25일에 충분히 관수된 처리구(500mL/d/plant)와 결핍 처리구(0mL/d/plant)에서 이산화탄소 포화 곡선을 작성하였고, 정식 후 38일에 생장을 조사하였다(단, 관수량 처리구 0과 200mL/d/plant는 위조되어 정식 후 29일에 생장 조사함). 토양수분과 배추의 기공전도도는 밀접한 관계가 있었으며($r^2=0.999$), 직선의 정의 상관관계로 y = 6097.4x - 4.2984였다. 충분히 관수된 배추의 이산화탄소 포화곡선은 정상적인 포화 곡선을 보였으나, 토양수분이 극도로 결핍된 배추는 체내로 이산화탄소가 확산되어 들어가지 않으며, 광합성 속도도 약 $6.5{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ 미만으로 급격히 감소하였다. 충분히 관수된 처리구(500mL/d/plant)에 비하여 토양 수분 결핍구(0mL/d/plant 처리)에서는 약 6.8배 이상 건물생산량이 감소하였다. 그리고 토양의 수분 함량에 따라 엽면적 지수가 로그함수적(y = 16.573 + 3.398 ln x)으로 증가하였고, 결정 계수 $r^2=0.913$로 높은 상관 관계가 있었다. 결과적으로, 정식초기의 토양 수분 함량이 결핍되면 배추의 생장이 지연되며, 광합성 속도와 기공전도도가 낮아지는 것으로 밝혀졌다. 또한, 토양수분 함량과 배추 생장 반응 모델을 기공전도도와 엽면적 지수를 변수로 활용하면 정확도가 우수한 모델을 개발할 수 있을 것으로 기대된다.

Keywords

References

  1. Hajiboland, R. and H. Amirazad. 2010. Drought tolerance in Zn-deficient red cabbage (Brassica oleracea L. var. capitata f. rubra) plants. Hort. Sci. 37:88-98.
  2. HARI. 2000. Vegetable cultivation technology in highland. p. 52-53.
  3. Hashem, A., M.N.A. Majumdar, A. Hamid, and M.M. Hossain. 1998. Drought stress effects on seed yield, yield attributes, growth, cell membrane stability and gas exchange of synthesized Brassica napus L. J. Agron. Crop Sci.-Z. Acker Pflanzenbau 180:129-136. https://doi.org/10.1111/j.1439-037X.1998.tb00382.x
  4. Hwang, S.W., J.Y. Lee, S.C. Hong, Y.H. Park, S.G. Yun, and M.H. Park. 2003. High temperature stress of summer Chinese cabbage in alpine region. Kor. J. Soil Sci. Fert. 36:417-422.
  5. Janoudi, A.K., I.E. Widders, and J.A. Flore. 1993. Water deficits and environmental factors affect photosynthesis in leaves of cucumber (Cucumis sativus). J. Amer. Soc. Hort. Sci. 118:366-370.
  6. Kim, K.D., J.T. Suh, J.N. Lee, D.L. Yoo, M. Kwon, and S.C. Hong. 2015. Evaluation of factors related to productivity and yield estimation based on growth characteristics and growing degree days in highland Kimchi cabbage. Kor. J. Hort. Sci. Technol. 33:911-922.
  7. Korean Seed Association (KOSA). 2015. Statistics of seed production (http://www.kosaseed.or.kr).
  8. Kuo, C.G., B.J. Shen, H.M. Chen, and R.T. Opena. 1988. Associations between heat tolerance, water consumption, and morphological characters in Chinese cabbage. Euphytica 39:65-73. https://doi.org/10.1007/BF00025113
  9. Lee, J.G., J. Lee, S. Park, Y.A. Jang, S.S. Oh, T.C. Seo, H.K. Yoon, and Y.C. Um. 2011. Effect of low night-time temperature during seedling stage on growth of spring Chinese cabbage. J. Bio-Environ. Cont. 20:326-332.
  10. Lee, S.G., H.J. Lee, S.K. Kim, C.S. Choi, S.T. Park, Y.A. Jang, and K.R. Do. 2015. Effects of vernalization, temperature, and soil drying periods on the growth and yield of Chinese cabbage. Kor. J. Hort. Sci. Technol. 33:820-828.
  11. Lee, S.G., S.K. Kim, H.J. Lee, C.S. Choi, and S.T. Park. 2016. Impacts of climate change on the growth, morphological and physiological responses, and yield of Kimchi cabbage leaves. Hort. Environ. Biotechnol. 57:470-477. https://doi.org/10.1007/s13580-016-1163-9
  12. Lee, S.G., T.C. Seo, Y.A. Jang, J.G. Lee, C.W. Nam, C.S. Choi, K.H. Yeo, and Y.C. Um. 2012. Prediction of Chinese cabbage yield as affected by planting date and nitrogen fertilization for spring production. J. Bio-Environ. Cont. 21:271-275.
  13. Ministry of Agriculture, Food and Rural Affairs (MAF). 2016. Primary statistics for agriculture production (http:// www.mafra.go.kr/main.jsp).
  14. Oh, S., K.H. Moon, E.Y. Song, I.C. Son, and S.C. Koh. 2015. Photosynthesis of Chinese cabbage and radish in response to rising leaf temperature during spring. Hort. Environ. Biotechnol. 56:159-166. https://doi.org/10.1007/s13580-015-0122-1
  15. Oh, S., K.H. Moon, I.C. Son, E.Y. Song, Y.E. Moon, and S.C. Koh. 2014. Growth, photosynthesis and chlorophyll fluorescence of Chinese cabbage in response to high temperature. Kor. J. Hort. Sci. Technol. 32:318-329.
  16. Park, K.Y. 1988. Modeling for predicting yield and ${\alpha}$-acid content in hop (Humulus lupulus L.) from meteorological elements. Kor. J. Crop Sci. 33:215-221.
  17. Sharkey, T.D., C.J. Bemacchi, G.D. Farquhar, and E.L. Singsaas. 2007. Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ. 30:1035-1040. https://doi.org/10.1111/j.1365-3040.2007.01710.x
  18. Smittle, D.A. 1994. Irrigation regimes affect cabbage water use and yield. J. Amer. Soc. Hort. Sci. 119:20-23.
  19. Son, I.C., K.H. Moon, E.Y. Song, S. Oh, H. Seo, Y.E Moon, and J. Yang. 2015. Effect of differentiated temperature based on growing season temperature on growth and physiological response in Chinese cabbage 'Chunkwang'. Kor. J. Agri. Forest Meteorol. 17:254-260. https://doi.org/10.5532/KJAFM.2015.17.3.254