• Title/Summary/Keyword: Branch-and-Bound Algorithm

Search Result 191, Processing Time 0.035 seconds

Two-sided assembly line balancing using a branch-and-bound method (분지한계법을 이용한 양면조립라인 밸런싱)

  • Kim, Yeo-Keun;Lee, Tae-Ok;Shin, Tae-Ho
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.3
    • /
    • pp.417-429
    • /
    • 1998
  • This paper considers two-sided (left and right side) assembly lines which are often used, especially in assembling large-sized products such as trucks and buses. A large number of exact algorithms and heuristics have been proposed to balance one-sided lines. However, little attention has been paid to balancing two-sided assembly lines. We present an efficient algorithm based on a branch and bound for balancing two-sided assembly lines. The algorithm involves a procedure for generating an enumeration tree. To efficiently search for the near optimal solutions to the problem, assignment rules are used in the method. New and existing bound strategies and dominance rules are else employed. The proposed algorithm can find a near optimal solution by enumerating feasible solutions partially. Extensive computational experiments are carried out to make the performance comparison between the proposed algorithm and existing ones. The computational results show that our algorithm is promising and robust in solution quality.

  • PDF

A Flexible Branch and Bound Method for the Job Shop Scheduling Problem

  • Morikawa, Katsumi;Takahashi, Katsuhiko
    • Industrial Engineering and Management Systems
    • /
    • v.8 no.4
    • /
    • pp.239-246
    • /
    • 2009
  • This paper deals with the makespan minimization problem of job shops. The problem is known as one of hard problems to optimize, and therefore, many heuristic methods have been proposed by many researchers. The aim of this study is also to propose a heuristic scheduling method for the problem. However, the difference between the proposed method and many other heuristics is that the proposed method is based on depth-first branch and bound, and thus it is possible to find an optimal solution at least in principle. To accelerate the search, when a node is judged hopeless in the search tree, the proposed flexible branch and bound method can indicate a higher backtracking node. The unexplored nodes are stored and may be explored later to realize the strict optimization. Two methods are proposed to generate the backtracking point based on the critical path of the current best feasible schedule, and the minimum lower bound for the makespan in the unexplored sub-problems. Schedules are generated based on Giffler and Thompson's active schedule generation algorithm. Acceleration of the search by the flexible branch and bound is confirmed by numerical experiment.

Heuristic Aspects of the Branch and Bound Procedure for a Job Scheduling Problem (작업 스케쥴링 문제 해결을 위한 Branch & Bound 해법의 비교분석)

  • Koh, Seok-Joo;Lee, Chae-Y.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.18 no.2
    • /
    • pp.141-147
    • /
    • 1992
  • This article evaluates the efficiency of three branch-and-bound heuristics for a job scheduling problem that minimizes the sum of absolute deviations of completion times from a common due date. To improve the performance of the branch-and-bound procedure, Algorithm SA is presented for the initial feasible schedule and three heuristics : breadth-first, depth-first and best-first search are investigated depending on the candidate selection procedure. For the three heuristics the CPU time, memory space, and the number of nodes generated are computed and tested with nine small examples (6 ${\leq}$ n ${\leq}$ 4). Medium sized random problems (10 ${\leq}$ n ${\leq}$ 30) are also generated and examined. The computational results are compared and discussed for the three heuristics.

  • PDF

A Branch-and-Bound Algorithm on the Fire Sequencing for Planned Artillery Operations (포병부대 사격순서결정을 위한 분지한계 알고리즘 연구)

  • Yoon, Sang-Hum;Hwang, Won-Shik;Juhn, Jae-Ho;Lee, Ik-Sun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.3
    • /
    • pp.154-161
    • /
    • 2010
  • This paper considers the simultaneously firing model for the artillery operations. The objective of this paper is to find the optimal fire sequence minimizing the final completion time of the firing missions of multiple artillery units for multiple targets. In the problem analysis, we derive several solution properties to reduce the solution space. Moreover, two lower bounds of objective are derived and tested along with the derived properties within a branch-and-bound scheme. Two efficient heuristic algorithms are also developed. The overall performances of the proposed branch-and-bound and heuristic algorithms are evaluated through various numerical experiments.

Multi-level Building Layout With Dimension Constraints On Departments (형태제약을 가지는 부서의 다층빌딩 설비배치)

  • Chae-Bogk Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.26 no.4
    • /
    • pp.42-49
    • /
    • 2003
  • The branch and bound techniques based on cut tree and eigenvector have been Introduced in the literature [1, 2, 3, 6, 9, 12]. These techniques are used as a basis to allocate departments to floors and then to fit departments with unchangeable dimensions into floors. Grouping algorithms to allocate departments to each floor are developed and branch and bound forms the basis of optimizing using the criteria of rectilinear distance. The proposed branch and bound technique, in theory, will provide the optimal solution on two dimensional layout. If the runs are time and/or node limited, the proposed method is a strong heuristic The technique is made further practical by the fact that the solution is constrained such that the rectangular shape dimensions length and width are fixed and a perfect fit is generated if a fit is possible. Computational results obtained by cut tree-based algorithm and eigenvector-based algorithm are shown when the number of floors are two or three and there is an elevator.

Development of a Branch-and-Bound Global Optimization Based on B-spline Approximation (비스플라인 분지한계법 기반의 전역최적화 알고리즘 개발)

  • Park, Sang-Kun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.191-201
    • /
    • 2010
  • This paper presents a new global optimization algorithm based on the branch-and-bound principle using Bspline approximation techniques. It describes the algorithmic components and details on their implementation. The key components include the subdivision of a design space into mutually disjoint subspaces and the bound calculation of the subspaces, which are all established by a real-valued B-spline volume model. The proposed approach was demonstrated with various test problems to reveal computational performances such as the solution accuracy, number of function evaluations, running time, memory usage, and algorithm convergence. The results showed that the proposed algorithm is complete without using heuristics and has a good possibility for application in large-scale NP-hard optimization.

Branch-and-Bound Based Heuristic Scheduling for the Single-Hoist and Multiple-Products Production System (단일 호이스트 생산시스템에서 다양한 주문을 처리하기 위한 분지한계 기반의 휴리스틱 일정계획)

  • Lee, Jungkoo;Kim, Jeongbae;Koh, Shiegheun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.42 no.3
    • /
    • pp.173-181
    • /
    • 2016
  • This paper deals with the single-hoist and multiple-products scheduling problem. Although a mixed integer linear programming model for the problem was developed earlier, a branch-and-bound based heuristic algorithm is proposed in this paper to solve the big-size problems in real situation. The algorithm is capable of handling problems incorporating different product types, jobs in the process, and tank capacities. Using a small example problem the procedure of the heuristic algorithm is explained. To assess the performance of the heuristic we generate a bigger example problem and compare the results of the algorithm proposed in this paper with the optimal solutions derived from the mathematical model of earlier research. The comparison shows that the heuristic has very good performance and the computation time is sufficiently short to use the algorithm in real situation.

Optimal Base Station Clustering for a Mobile Communication Network Design

  • Hong, Jung-Man;Lee, Jong-Hyup;Lee, Soong-Hee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.5
    • /
    • pp.1069-1084
    • /
    • 2011
  • This paper considers an optimal base station clustering problem for designing a mobile (wireless) communication network. For a given network with a set of nodes (base stations), the problem is to optimally partition the set of nodes into subsets (each called a cluster) such that the associated inter-cluster traffic is minimized under certain topological constraints and cluster capacity constraints. In the problem analysis, the problem is formulated as an integer programming problem. The integer programming problem is then transformed into a binary integer programming problem, for which the associated linear programming relaxation is solved in a column generation approach assisted by a branch-and-bound procedure. For the column generation, both a heuristic algorithm and a valid inequality approach are exploited. Various numerical examples are solved to evaluate the effectiveness of the LP (Linear Programming) based branch-and-bound algorithm.

An Assembly-Type Flowshop Scheduling Problem with Outsourcing Allowed (부품외주를 고려한 조립형 Flowshop 일정계획문제 연구)

  • Juhn, Jae-Ho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.29 no.4
    • /
    • pp.34-42
    • /
    • 2006
  • This paper considers an assembly-type flowshop scheduling problem in which each job is assembled with two types of components. One type of the components is outsourced with positive lead time but the other type is fabricated in-house at the first stage. The two types of the components should be prepared at the first stage before starting the assembly operation for each job at the second stage. The objective is to schedule the jobs so that the makespan is minimized. Some solution properties and lower bounds are derived and incorporated into a branch and bound algorithm. Also, an efficient heuristic is developed. The performances of the proposed branch and bound algorithm and heuristic are evaluated through computational experiments.

Optimizing Zone-dependent Two-level Facility Location Problem (Zone을 고려한 2단계 시설배치 계획 최적화)

  • Lim, Sung-Hoon;Sung, Chang-Sup;Song, Sang-Hwa
    • IE interfaces
    • /
    • v.24 no.4
    • /
    • pp.341-350
    • /
    • 2011
  • This paper considers a problem of locating both distribution centers and retailers in a zone-dependent two-level distribution network where either a distribution center or a retailer should be located in each zone. Customer demands of each zone should be satisfied directly from either its own distribution center or its own retailer being supplied from a distribution center of another zone. The objective of the proposed problem is to minimize total cost being composed of distribution center/retailer setup costs and transportation costs. In the analysis, the problem is proved to be NP-hard, so that a branch-and-bound algorithm is derived for the problem. Numerical experiments show that the proposed branch-and-bound algorithm provides the optimal solution efficiently for some small problems.