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Abstract. This paper deals with the makespan minimization problem of job shops. The problem is known as one 
of hard problems to optimize, and therefore, many heuristic methods have been proposed by many researchers. 
The aim of this study is also to propose a heuristic scheduling method for the problem. However, the difference 
between the proposed method and many other heuristics is that the proposed method is based on depth-first 
branch and bound, and thus it is possible to find an optimal solution at least in principle. To accelerate the search, 
when a node is judged hopeless in the search tree, the proposed flexible branch and bound method can indicate a 
higher backtracking node. The unexplored nodes are stored and may be explored later to realize the strict 
optimization. Two methods are proposed to generate the backtracking point based on the critical path of the 
current best feasible schedule, and the minimum lower bound for the makespan in the unexplored sub-problems. 
Schedules are generated based on Giffler and Thompson’s active schedule generation algorithm. Acceleration of 
the search by the flexible branch and bound is confirmed by numerical experiment. 
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1.  INTRODUCTION 

This paper deals with makespan minimization in 
job shops. The makespan is the length of the schedule. It 
is well known that the makespan minimization in job 
shops is one of the most difficult problems to optimize. 
Although several papers, e.g., Carlier and Pinson (1989), 
Brucker et al. (1994), Perregaard and Clausen (1998), 
Brinkkötter and Brucker (2001), have proposed strict op-
timization procedures, one of famous 20-job, 10-machine 
problems still remains unsolved (Pezzella and Merelli, 
2000).  

Many of these papers have been based on the depth-
first branch and bound method, and their primary focus 
has been on eliminating meaningless nodes or on finding 
nodes that would lead to better schedules. The branch and 
bound approach controls the search flow as follows: if a 
node in the search tree is unsuccessful, i.e., it cannot 
lead to a better solution, the search engine will go to the 
immediate parent node and examine different child nodes 

generated from this parent. Once all the child nodes have 
been examined, it will go back to the immediate parent 
of the current node, and continue the search until all 
remaining nodes have been examined. The superiority 
of this flow control is simplicity in programming and 
less consumption of computer memory.  

There is a different approach to accelerating the 
search of the depth-first branch and bound by utilizing 
search history. The main idea is to collect the reasons of 
unsuccessful conditions if a node is judged unsuccessful, 
and then infer that a new candidate node can be consid-
ered as a promising node or not. Guéret et al. (2000) 
applied the search history to the makespan minimization 
of open shops, and proved its effectiveness by solving 
benchmark problems. Although the acceleration of the 
search by utilizing search history was also confirmed by 
Morikawa et al. (2005) for job shops, its mechanism is 
rather complex. 

This paper proposes another approach to the accel-
eration of the depth-first branch and bound method, es-
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pecially in finding good solutions in an earlier stage of 
the search. To realize this goal we introduce a flexible 
control method within the search engine. In general, if a 
node is judged as unsuccessful, the search engine will 
go back to the immediate parent node as described be-
fore. However the search engine can also indicate a 
higher backtracking node without examining whole un-
explored child nodes in our proposed method. The un-
explored nodes are stored and will be examined later to 
realize the strict optimization of the search. Apparently 
this method can also be considered as a heuristic method 
by discarding unexplored nodes, interrupting the search 
after a certain amount of time, or terminating the search 
when a near-optimal solution is obtained. 

Giffler and Thompson’s active schedule generation 
algorithm (Giffler and Thompson, 1960) is adopted as a 
basic algorithm of makespan minimization in this study. 
Although their algorithm may not be the best to use for 
makespan minimization, it is possible to enumerate all 
minimum makespan schedules. Therefore, if a schedule 
is required that optimizes a secondary criterion from the 
set of minimum makespan schedules, Giffler and Thom-
pson’s algorithm may be necessary. Finding schedules 
that are less sensitive to the uncertainty of processing 
times from the set of minimum makespan schedules 
(Kawata, et al., 2003) is an example of such cases. 

This paper first describes the makespan minimiza-
tion procedure. An example problem is then introduced 
to explain the motivation of developing a flexible branch 
and bound method, and to illustrate key ideas when con-
sidering candidate backtracking nodes. The control me-
chanism is then explained in detail and the effectiveness 
of the proposed approach is discussed by solving ben-
chmark problems. 

2.  MAKESPAN MINIMIZATION BY 
BRANCH AND BOUND 

2.1 Assumptions 

1) Let n be the number of jobs, and m the number of 
machines. Each job must visit each machine exactly 
once. The process route for jobs is given in advance.  

2) The operation time is deterministic and sequence-
independent. All jobs arrive at the shop at time zero 
and their moving times between machines are negli-
gible.  

2.2 Disjunctive Graph 

Figure 1 is an initial disjunctive graph for the job 
shop scheduling problem. Nodes correspond to opera-
tions and directed arcs correspond to precedence con-
straints within each job. Operations are numbered se-
quentially from 0 to nm + 1, where 0 and nm + 1 are 
dummy operations, and the jth (j = 1, …, m) operation 
of job i(i = 1, …, n) is numbered ( )1 .i m j− +  The 

length of the directed arc(s) starting from node k is the 
processing time for operation k, denoted by ,kp  where 

0 0p =  has been assumed. If there is a directed arc, c → 
d, this means that the process for operation d can only 
be started after operation c has been completed. Al-
though there are undirected disjunctive arcs between 
operations that must be processed on the same machine, 
these arcs have not been included in the figure. 

As the initial graph has only taken the precedence 
constraints within each job into consideration, the cor-
responding schedule is generally infeasible because two 
or more operations require the same machine simultane-
ously. It is necessary to determine the process order for 
these operations to resolve this operation conflict. This 
decision corresponds to determining the direction of 
disjunctive arc(s) and directed arcs between conflicting 
operations must be added to the graph. The length of the 
added arcs is also defined by the processing time for the 
operation corresponding to the starting node. If there are 
no operation conflicts then the corresponding schedule 
is feasible, and its makespan equals the length of the 
longest path from dummy operation 0 to nm + 1. There-
fore, solving the scheduling problem involves making 
the length of the longest path as short as possible when 
resolving operation conflicts.  
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Figure 1. Initial disjunctive graph. 

2.3 Head and Tail Times 

For any operation c(c = 0, 1, …, nm + 1) in Figure 
1, the length of the longest path from operation 0 to c is 
the head time for c, denoted by .ch  By subtracting cp  
from the length of the longest path from c to nm + 1, the 
value obtained is the tail time for c, denoted by .ct  Un-
directed disjunctive arcs are ignored when calculating 
these values. The values of head and tail times are non-
decreasing with the addition of directed disjunctive arcs, 
and are utilized when calculating lower bound for the 
makespan of the current partial schedule. 

2.4 One-machine Preemptive Scheduling 

Suppose that a disjunctive graph is given contain-
ing some directed disjunctive arcs. Consider the one-
machine scheduling problem based on this graph. First, 
select a machine, calculate the head and tail times for 
operations to be processed on the machine, and then 
preemptively schedule the operations on the machine. 
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The scheduling method involves allocating an operation 
on the machine when it arrives (at its head time), or 
when the machine has completed the process for some 
other operation. If two or more operations are ready to 
process, select the one with the longest tail time. The 
schedule obtained is called JPS (Jackson’s Preemptive 
Schedule) and its makespan is a lower bound for the 
makespan of the non-preemptive, one-machine sequenc-
ing problem. The JPS makespan can be obtained for 
each machine separately, and the maximum makespan is 
a lower bound for the makespan of the job shop to be 
solved (Carlier, 1982).  

2.5 Standard Makespan Minimization Procedure 

It is well known that a minimum makespan sched-
ule can be obtained from the set of active schedules. 
This study therefore attempts to find a minimum make-
span schedule based on Giffler and Thompson’s active 
schedule generation algorithm. Hopeless partial sched-
ules are pruned based on the lower bound. The optimal 
schedule is the last schedule produced by the procedure. 
The initial value of upper bound ub for the makespan is 
the makespan of the SPT (Shortest Processing Time) 
schedule applied to the original problem. The proposed 
procedure is as follows:  
0 : Let S be the set of operations that can be sched-

uled. Initially the elements in S represent the first 
operation of all jobs. 

1 : Calculate the head and tail times for all operations. 
If at least one of the following two unsuccessful 
conditions is satisfied, stop the search under the 
current node, go back to the immediate parent 
problem, and then go to 5  after selecting an un-
solved sub-problem based on the priority de-
scribed in .4.2   
•  For any operation c, the following condition is 

satisfied. 

c cc ubph t+ + ≥           (1) 

•  The lower bound given by JPS is equal to, or 
greater than ub. 

2 : Let g be an operation that yields ( ),min j S j jph∈ +  
and m̂  be the machine on which g must be proc-
essed. 

3 : Let 'S  be a subset of operations in S where the 
head time is less than ( )g gph +  and must be proc-
essed on machine m̂ . 

4 : If ' 1S =  then go to 4.1 , otherwise go to 4.2 . 
4.1 : Remove the operation in 'S  from S, and add its 

job-successor operation to S, if it exists. Go to 5 . 
4.2 : Generate 'S  sub-problems by assigning each ope-

ration in 'S  as the first operation for processing. 
More precisely, if operation ' 'g S∈  is selected as 
the first operation, then the unscheduled opera-
tions that must be processed on m̂  are all sched-
uled after '.g  Thus, the direction of disjunctive 
arcs between them is determined. Operation 'g  is 

removed from S, and the job-successor operation 
of 'g  is added to S, if it exists. After generating 

'S  sub-problems, assign priorities to sub-pro-
blems based on the following criteria, select the 
one with the highest priority, and store other sub-
problems. Go to 5 . 
[Priority criteria] 
First: The lower bound for the makespan calcu-

lated by considering all the machines in 
each sub-problem. 

Second: The lower bound for the makespan on 
machine m̂ . 

Third: The head time for the selected operation. 
Fourth: The tail time for the selected operation. 

A smaller value in the above criteria means a 
higher priority except for the fourth criterion. If 
two or more sub-problems are given the same pri-
ority based on the first criterion, then use the sec-
ond criterion, and then the third, and lastly the 
fourth. 

5 : If S is not empty then go back to 1 . Otherwise, 
the procedure finds a feasible schedule. If the 
makespan of the schedule, ',T  is less than ub, 
then output the current schedule, and set '.ub T=  
Go back to the immediate parent problem, and 
continue the search if there is an unsolved sub-
problem. 

3.  A FLEXIBLE BRANCH AND BOUND 
METHOD 

3.1 Explanatory Example 

Let us minimize the makespan, Cmax, of problem 
la04, a famous benchmark problem with 10 jobs (A to J) 
and 5 machines (M0 to M4) using a depth-first branch 
and bound method. The search tree of this problem is 
shown in Figure 2 (a). As this problem has 50 operations, 
the number of levels becomes 50, and a first feasible 
solution obtained is shown in Figure 2 (b) of which 
makespan is 638. By analyzing the search thoroughly, 
we can find a better feasible solution (Cmax = 628) if 
we select the second sub-problem generated on level 24 
as shown in Figure 2 (c). A further improvement on the 
makespan is realized by selecting the second sub-pro-
blem generated on level 9 shown in Figure 2 (d). An 
optimal schedule that realizes Cmax = 590 shown in 
Figure 2 (e) is obtained by selecting the second sub-
problem generated on level 8. 

If we can go back to the node ‘sub 8-2’, the second 
sub-problem on level 8, immediately after obtaining the 
first feasible schedule, a certain amount of useless sea-
rch could be eliminated. However, it is difficult to find 
nodes that can lead to better schedules from a feasible 
schedule on hand. It is well-known that in order to re-
duce the makespan of a schedule, we need to change the 
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(a) Search tree of problem 1a04 

 
(b) Initial feasible schedule (Cmax = 638) 

 
(c) An improved schedule (Cmax = 628) generated from 

sub-problem (24-2) 

 
(d) An improved schedule (Cmax = 595) generated from 

sub-problem (9-2) 

 
(e) Optimal schedule (Cmax = 590) generated from sub-

problem 8-2 

Figure 2. Search tree and four schedules found along with 
the search. 

 
processing order of jobs on the critical path (Brucker et 
al., 1994). The critical path in the initial schedule is 
shown in Figure 2 (b) with gray bold lines, i.e., the star-
ing job is B on M1, and after visiting M3, and M0, the 
last job is G on M4. The sub-problem 24-2 corresponds 
to the assignment of job G on M2 after finishing the 
processing of F. However, without complicated exami-
nations, it is difficult to find why starting job G earlier 
could produce a better schedule. Similarly, the effect of 

starting job I earlier on M4 (sub-problem 9-2) is not so 
clear. Probably a skilled scheduler can find that by start-
ing job I on M4 at time 96, the remaining operations of 
job I on M0, M1, and M3 can be started earlier and 
these movements can utilize unused time intervals in-
volved in the current schedule. The sub-problem 8-2 
fixes the start of job F on M3 immediately after B. As 
job F is involved in the critical path, this sub-problem 
can be considered as a hopeful node.  

3.2 Algorithm of the Flexible Branch and Bound 

3.2.1 Sub-problem handling mechanism 

As sub-problems generated through a depth-first 
search are examined in LIFO (last-in, first-out) manner, 
it is a good way to use a stack to store sub-problems. A 
sub-problem has (i) the set of operations, S, to be con-
sidered on this level, (ii) the selected operation to be 
scheduled on this node, and (iii) the current condition of 
the graph. Under the standard depth-first branch and 
bound method, the graph information can be maintained 
by using arrays for storing directed disjunctive arcs 
added from the root node to the current node. Each sub-
problem can retrieve the graph information by storing 
the indices for these arrays. Storing head and tail times, 
and lower bound is also desirable to reduce the compu-
tational burden. 

If we need to divide the stack of sub-problems into 
two parts, however, a dual-linked list structure instead 
of a general array-based stack is useful. In addition we 
need an array for storing lists of unsolved sub-problems. 
Figure 3 (a) shows the storing structure of sub-problems 
ready for sub-problem separations. Figure 3 (b) indica-
tes a case that after finding a feasible schedule, the node 
‘sub 24-2’ is selected as a backtracking node. The list of 
sub-problems stored in the main is shortened, and the 
unexamined sub-problems are stored in the 1st element 
of the array with the value of lower bound for later ex-
plorations. The last sub-problem element must hold the 
current graph information in full form as shown in Fig-
ure 3 (b). The word full form means that all directed 
disjunctive arcs added from the root node to the current 
node are stored. When starting the search from a stored 
sub-problem, the graph information with it is first over-
written to the current graph information and the search 
is then activated. 

3.2.2 Backtracking node decision  

The flexible branch and bound method needs solu-
tions to the following questions: (i) when the search 
engine calls a halt to the current search, and (ii) which 
node to backtrack. As these questions are difficult to 
solve perfectly, we introduce simple methods as answers 
to these questions. 

The stopping condition for the current ordinal search 
is defined as follows: if the number of sub-problems 
taken from the main list without improving the current 
feasible solution reaches a pre-specified threshold value, 
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stop the current search. On the other hand, the back-
tracking point is decided by the following two methods: 

 
Method CP: Based on the critical path of the current 

best feasible schedule, start the search from the bot-
tom of the list, and find a sub-problem of which the 
selected operation belongs to a block of the critical 
path, and it can be started by the start time of the 
first operation of the block. A block is a set of two 
or more operations on the critical path to be proc-
essed on a machine successively. If there is no such 
operation, then repeat the search to find a sub-
problem of which the selected operation belongs to 
the critical path. 

Method LB: First find the minimum lower bound from 
sub-problems in the main list, and then find the 
sub-problem with the minimum lower bound and 
the maximum level number.  
 
Method CP considers the critical path of the current 

best feasible schedule, while Method LB focuses on the 

lower bound of the sub-problems. As described in sec-
tion 3.1, focusing on the critical path is reasonable but it 
is not enough in general. In addition, there is no guaran-
tee that at least one sub-problem can be found by Me-
thod CP. Therefore, Method LB is also introduced that 
considers the lower bound, an important value when 
realizing an efficient search in branch and bound. When 
applying Method CP, if Method CP cannot find a sub-
problem, then Method LB is invoked after that. There-
fore, this combined method is termed Method CP & LB 
hereafter. 

3.2.3 Control mechanism of flexible branch and 
bound 

Our proposed method differs from the standard 
branch and bound method in several points. Basically 
sub-problems in the main list are solved by the standard 
depth-first branch and bound manner. When the number 
of sub-problems in the main list reaches zero, however, 
one sub-problem list from the array with minimum lower 
bound is moved to the main list and then the search en-
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(a) Standard method (b) Proposed method

Store in array with current graph data

 

Figure 3. Example to illustrate the structure for storing sub-problems. 
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gine examines this moved list, if at least one sub-pro-
blem list exists in the array. 

The normal LIFO operation to the sub-problems in 
the main list is interrupted when the number of sub-
problems solved without improving the current best 
solution reaches a pre-specified threshold value. A sub-
problem is then selected from the main list as a back-
tracking point by Method CP or Method LB, and a list 
of unsolved sub-problems under the selected sub-problem 
is moved to the array, and the search is started from the 
backtracking point. When moving the list of unsolved 
sub-problems, the graph information is attached to the 
bottom of the list, and the value of lower bound of this 
list is also stored. If there is no space in the array, then 
continue the search of the current list in the main list, or 
exchange the list of sub-problems between the main list 
and one in the array based on the lower bound of them. 
The search is applied to the list of sub-problems with a 
smaller lower bound value. These modifications to the 
standard branch and bound method are summarized in 
Figure 4. 

 

 
Figure 4. Steps modified from the standard depth-first 

branch and bound method. 

4.  NUMERICAL EXPERIMENT 

4.1 Purpose of Experiment and Problems Solved 

Although the flexible branch and bound method is 

expected to find better schedules faster than the standard 
branch and bound method, its actual performance cannot 
be discussed without solving several benchmark prob-
lems. In addition, the performance of the proposed me-
thod may depend on the value of parameters, and meth-
ods of selecting a backtracking point. In this experiment, 
we focus on Method CP& LB and Method LB, both 
decide the backtracking node, and parameter values were 
fixed based on preliminary experiments. 

Forty-four job-shop scheduling problems presented by 
Lawrence (la01-la40), Adams et al. (abz5, abz6), and Fi-
sher and Thompson (ft10, ft20) were firstly selected. A 
preliminary experiment revealed that 21 problems (la01-
15, la31-35, and ft20) could be solved optimally by the 
standard branch and bound method described in section 
2.5 in a short time. Therefore we applied two backtrack-
ing methods to the remaining 23 problems. The program 
was written in Java language, and the experiment was 
conducted using Java 2 SDK 1.6.0 by Sun Microsystems, 
Inc. on a notebook computer with a Pentium M, 2.0-
GHz CPU. The length of the array for storing sub-
problem lists was 10, and the threshold value to inter-
rupt the current search was 100,000. All computations 
were terminated after five minutes of searches if the 
flexible branch and bound method could not find an 
optimal solution with the confirmation of its optimality. 

4.2 Results and Discussion 

The values of minimum makespan found or con-
sumed computation times using Method CP&LB and 
Method LB are summarized in Table 1. This table also 
includes the best makespan found within five minutes 
by the standard branch and bound method, and by ap-
plying the history-guided search method both reported 
in Morikawa et al. (2005). Please note that these results 
were obtained on a personal computer with a Pentium 4, 
2.6-GHz CPU. The history-guided search accelerated 
searches in 13 out of 23 problems, but the optimal solu-
tion was found only in one problem. 

A clear difference in best solutions between Method 
CP & LB and Method LB could not be found at a first 
glance. Method CP & LB found better solutions in 6 
problems, while Method LB in 9 problems. Both meth-
ods found the same solutions in terms of the makespan 
in 8 problems. However, if the problems are divided into 
two cases; n = m, and n > m, then Method CP&LB pro-
duced better results in 5 problems, the same results in 7 
problems, and a worse result in 1 problem under n = m. 
On the other hand, Method LB performed better in 8 
problems, found the same solution in 1 problem, and 
could not find a better solution in 1 problem under the 
condition of n > m. From the numbers of backtracking 
points decided by Method CP and Method LB shown in 
the column of Method CP&LB, we can find that Method 
CP almost determined the backtracking points under n > 
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m. On the contrary, Method LB was often activated in 
Method CP&LB under n = m. From these results we can 
expect that blending these two methods properly will 
realize a more efficient search. 

Table 1 indicates that as an exact optimization pro-
cedure, the performance of the proposed flexible branch 
and bound method was not so stable but it produced the 
same or better solutions than the solutions found by the 
history-guided branch and bound method. The history-
guided branch and bound found a better schedule for 
problems la19 and ft10, solved la23 quickly, and per-
formed better than Method CP&LB or Method LB in 3 
problems. However, the proposed flexible branch and 
bound often found better schedules in earlier stages of 
the search, particularly in 10-machine problems with 15 
or 20 jobs. Method LB found optimal schedules of prob-
lems la23 and la30 within about two minutes including 
the guarantee of the optimality. Method CP&LB also 
solved la23 optimally. Under these scale problems, the 
backtracking to upper nodes accelerated the search to 
some extent. For 15-job, 15-machine problems, never-

theless, the effect of proposed backtracking was limited. 
More elaborated methods that find a good backtracking 
point and guide the search from that point will be re-
quired to solve this scale problems. 

 
Table 2. Computation time (in seconds) required to obtain 

an optimal solution and confirm its optimality. 

la18 la19 la20 abz5 abz6 
[2425s] [2712s] [6452s] [21434s] [342s] 

 
The smallest scale of the problems shown in Table 

1 is 10 jobs and 10 machines, and the proposed method 
found optimal solutions in two problems; la18 and abz6. 
However, the optimality of these solutions could not be 
proved in five minutes. Therefore an additional lengthy 
experiment was implemented to further investigate the 
proposed flexible branch and bound method as a strict 
optimization method by solving eight problems with 10 
jobs and 10 machines. Based on the discussion descri-
bed above, the backtracking node is firstly decided ba-

Table 1. Best makespan or computation time (in seconds) within five minutes of computation.†1 

n×m Name Optimal†3 Method CP  
& LB†4 Method LB Standard 

 B & B†2 
History-guided 

B & B†2 
10×10 la16 945 975 (3, 7) 968 988 979 
10×10 la17 784 792 (7, 4) 792 792 792 
10×10 la18 848 848 (4, 7) 854 859 854 
10×10 la19 842 854 (2, 8) 854 846 846 
10×10 la20 902 907 (5, 5) 908 915 915 
15×10 la21 1046 1101 (9, 0) 1092 1193 1128 
15×10 la22 927 974 (3, 1) 969 1029 994 
15×10 la23 1032 [51s] (0, 0) [51s] [65s] [19s] 
15×10 la24 935 970 (4, 1) 967 985 985 
15×10 la25 977 1023 (6, 0) 1036 1054 1048 
20×10 la26 1218 1290 (6, 0) 1274 1290 1290 
20×10 la27 1235 1356 (4, 0) 1321 1371 1353 
20×10 la28 1216 1234 (6, 0) 1229 1251 1245 
20×10 la29 (1153) 1278 (4, 0) 1244 1291 1278 
20×10 la30 1355 1394 (6, 0) [122s] 1394 1390 
15×15 la36 1268 1331 (1, 3) 1332 1350 1331 
15×15 la37 1397 1449 (0, 3) 1449 1449 1449 
15×15 la38 1196 1295 (4, 0) 1295 1295 1295 
15×15 la39 1233 1289 (4, 0) 1289 1289 1289 
15×15 la40 1222 1301 (2, 1) 1301 1386 1345 
10×10 abz5 1234 1238 (8, 2) 1249 1238 1238 
10×10 abz6 943 943 (1, 8) 943 966 966 
10×10 ft10 930 952 (3, 7) 958 956 947 

Note) †1 If an optimal schedule was found and its optimality was confirmed within five minutes, then the computation time in 
seconds is shown within square brackets. (Problems la23 and la30). 

 †2  These results are adopted from Morikawa et al. (2005). 
 †3  The value 1153 in parenthesis in problem la29 means that this is the best known value. 
 †4  The numbers in parentheses are the number of backtracking nodes decided by Method CP, and Method LB, respec-

tively. 
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sed on the critical path of the current best feasible sche-
dule, and the size of the space for storing sub-problem 
lists was set to 10,000 in order to avoid the additional 
computational burden caused by list exchange opera-
tions. The computation time was limited to six hours, 
and the required time to find an optimal solution and 
then confirm its optimality was obtained. In this experi-
ment, the proposed method found optimal solutions of 
all these problems. This fact reinforces the validity of 
the proposed flexible branch and bound method as an 
optimization approach. In terms of the computation time, 
on the other hand, the method did not terminate in six 
hours in problems la16, la17, and ft10. Table 2 indicates 
the computation time of other five problems. The mini-
mum time was less than six minutes, while the maxi-
mum time was nearly six hours. This result indicates the 
difficulty of confirming the solution optimality within 
the active schedule generation mechanism alone desc-
ribed in section 2.5. 

5. CONCLUSION 

A flexible depth-first branch and bound method 
that can indicate a higher backtracking node, and store 
the remaining unsolved sub-problems to later explora-
tions is proposed in this study. The focused problem is 
the makespan minimization of job shops based on Gif-
fler and Thompson’s active schedule generation algo-
rithm. Two methods are proposed for deciding back-
tracking points. One is based on the critical path of the 
current best feasible solution, and the other is on the 
lower bound for the makespan of unsolved sub-pro-
blems. A dual-linked list structure is introduced for di-
viding and retrieving unsolved sub-problems easily. Ac-
celeration of the search by the flexible branch and bound 
is confirmed by numerical experiment.   

Further acceleration will be achievable by utilizing 
other beneficial information involved in the feasible 
schedules. In addition the priority assignment rule among 
sub-problems has also impact on the search speed. Ex-
haustive examinations of experimental results will give 
some suggestions for resolving these issues. Applying 
the flexible branch and bound under other branching stra-
tegies may be also an interesting research theme.  
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