
IEMS Vol. 8, No. 4, pp. 239-246, December 2009.

A Flexible Branch and Bound Method
for the Job Shop Scheduling Problem

Katsumi Morikawa †
Department of Artificial Complex Systems Engineering, Graduate School of Engineering,

Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima 739-8527, JAPAN
E-mail: mkatsumi@hiroshima-u.ac.jp

Katsuhiko Takahashi

Department of Artificial Complex Systems Engineering, Graduate School of Engineering,
Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima 739-8527, JAPAN

E-mail: takahasi@hiroshima-u.ac.jp

Received, March 31, 2009; Revised, September 25, 2009; Accepted, October 12, 2009

Abstract. This paper deals with the makespan minimization problem of job shops. The problem is known as one
of hard problems to optimize, and therefore, many heuristic methods have been proposed by many researchers.
The aim of this study is also to propose a heuristic scheduling method for the problem. However, the difference
between the proposed method and many other heuristics is that the proposed method is based on depth-first
branch and bound, and thus it is possible to find an optimal solution at least in principle. To accelerate the search,
when a node is judged hopeless in the search tree, the proposed flexible branch and bound method can indicate a
higher backtracking node. The unexplored nodes are stored and may be explored later to realize the strict
optimization. Two methods are proposed to generate the backtracking point based on the critical path of the
current best feasible schedule, and the minimum lower bound for the makespan in the unexplored sub-problems.
Schedules are generated based on Giffler and Thompson’s active schedule generation algorithm. Acceleration of
the search by the flexible branch and bound is confirmed by numerical experiment.

Keywords: Scheduling, Job Shop, Makespan, Depth-first Branch and Bound, Heuristic

1. INTRODUCTION

This paper deals with makespan minimization in
job shops. The makespan is the length of the schedule. It
is well known that the makespan minimization in job
shops is one of the most difficult problems to optimize.
Although several papers, e.g., Carlier and Pinson (1989),
Brucker et al. (1994), Perregaard and Clausen (1998),
Brinkkötter and Brucker (2001), have proposed strict op-
timization procedures, one of famous 20-job, 10-machine
problems still remains unsolved (Pezzella and Merelli,
2000).

Many of these papers have been based on the depth-
first branch and bound method, and their primary focus
has been on eliminating meaningless nodes or on finding
nodes that would lead to better schedules. The branch and
bound approach controls the search flow as follows: if a
node in the search tree is unsuccessful, i.e., it cannot
lead to a better solution, the search engine will go to the
immediate parent node and examine different child nodes

generated from this parent. Once all the child nodes have
been examined, it will go back to the immediate parent
of the current node, and continue the search until all
remaining nodes have been examined. The superiority
of this flow control is simplicity in programming and
less consumption of computer memory.

There is a different approach to accelerating the
search of the depth-first branch and bound by utilizing
search history. The main idea is to collect the reasons of
unsuccessful conditions if a node is judged unsuccessful,
and then infer that a new candidate node can be consid-
ered as a promising node or not. Guéret et al. (2000)
applied the search history to the makespan minimization
of open shops, and proved its effectiveness by solving
benchmark problems. Although the acceleration of the
search by utilizing search history was also confirmed by
Morikawa et al. (2005) for job shops, its mechanism is
rather complex.

This paper proposes another approach to the accel-
eration of the depth-first branch and bound method, es-

† : Corresponding Author

240 Katsumi Morikawa·Katsuhiko Takahashi

pecially in finding good solutions in an earlier stage of
the search. To realize this goal we introduce a flexible
control method within the search engine. In general, if a
node is judged as unsuccessful, the search engine will
go back to the immediate parent node as described be-
fore. However the search engine can also indicate a
higher backtracking node without examining whole un-
explored child nodes in our proposed method. The un-
explored nodes are stored and will be examined later to
realize the strict optimization of the search. Apparently
this method can also be considered as a heuristic method
by discarding unexplored nodes, interrupting the search
after a certain amount of time, or terminating the search
when a near-optimal solution is obtained.

Giffler and Thompson’s active schedule generation
algorithm (Giffler and Thompson, 1960) is adopted as a
basic algorithm of makespan minimization in this study.
Although their algorithm may not be the best to use for
makespan minimization, it is possible to enumerate all
minimum makespan schedules. Therefore, if a schedule
is required that optimizes a secondary criterion from the
set of minimum makespan schedules, Giffler and Thom-
pson’s algorithm may be necessary. Finding schedules
that are less sensitive to the uncertainty of processing
times from the set of minimum makespan schedules
(Kawata, et al., 2003) is an example of such cases.

This paper first describes the makespan minimiza-
tion procedure. An example problem is then introduced
to explain the motivation of developing a flexible branch
and bound method, and to illustrate key ideas when con-
sidering candidate backtracking nodes. The control me-
chanism is then explained in detail and the effectiveness
of the proposed approach is discussed by solving ben-
chmark problems.

2. MAKESPAN MINIMIZATION BY
BRANCH AND BOUND

2.1 Assumptions

1) Let n be the number of jobs, and m the number of
machines. Each job must visit each machine exactly
once. The process route for jobs is given in advance.

2) The operation time is deterministic and sequence-
independent. All jobs arrive at the shop at time zero
and their moving times between machines are negli-
gible.

2.2 Disjunctive Graph

Figure 1 is an initial disjunctive graph for the job
shop scheduling problem. Nodes correspond to opera-
tions and directed arcs correspond to precedence con-
straints within each job. Operations are numbered se-
quentially from 0 to nm + 1, where 0 and nm + 1 are
dummy operations, and the jth (j = 1, …, m) operation
of job i(i = 1, …, n) is numbered ()1 .i m j− + The

length of the directed arc(s) starting from node k is the
processing time for operation k, denoted by ,kp where

0 0p = has been assumed. If there is a directed arc, c →
d, this means that the process for operation d can only
be started after operation c has been completed. Al-
though there are undirected disjunctive arcs between
operations that must be processed on the same machine,
these arcs have not been included in the figure.

As the initial graph has only taken the precedence
constraints within each job into consideration, the cor-
responding schedule is generally infeasible because two
or more operations require the same machine simultane-
ously. It is necessary to determine the process order for
these operations to resolve this operation conflict. This
decision corresponds to determining the direction of
disjunctive arc(s) and directed arcs between conflicting
operations must be added to the graph. The length of the
added arcs is also defined by the processing time for the
operation corresponding to the starting node. If there are
no operation conflicts then the corresponding schedule
is feasible, and its makespan equals the length of the
longest path from dummy operation 0 to nm + 1. There-
fore, solving the scheduling problem involves making
the length of the longest path as short as possible when
resolving operation conflicts.

0

0

0

0

1 2 m

m+1 m+2 2m

nm

p1

pm

pm–1

pm+1 p2m
p2m–1

pnm –1p(n–1)m+1

p nm

(n–1)m+1

nm +1

Figure 1. Initial disjunctive graph.

2.3 Head and Tail Times

For any operation c(c = 0, 1, …, nm + 1) in Figure
1, the length of the longest path from operation 0 to c is
the head time for c, denoted by .ch By subtracting cp
from the length of the longest path from c to nm + 1, the
value obtained is the tail time for c, denoted by .ct Un-
directed disjunctive arcs are ignored when calculating
these values. The values of head and tail times are non-
decreasing with the addition of directed disjunctive arcs,
and are utilized when calculating lower bound for the
makespan of the current partial schedule.

2.4 One-machine Preemptive Scheduling

Suppose that a disjunctive graph is given contain-
ing some directed disjunctive arcs. Consider the one-
machine scheduling problem based on this graph. First,
select a machine, calculate the head and tail times for
operations to be processed on the machine, and then
preemptively schedule the operations on the machine.

 A Flexible Branch and Bound Method for the Job Shop Scheduling Problem 241

The scheduling method involves allocating an operation
on the machine when it arrives (at its head time), or
when the machine has completed the process for some
other operation. If two or more operations are ready to
process, select the one with the longest tail time. The
schedule obtained is called JPS (Jackson’s Preemptive
Schedule) and its makespan is a lower bound for the
makespan of the non-preemptive, one-machine sequenc-
ing problem. The JPS makespan can be obtained for
each machine separately, and the maximum makespan is
a lower bound for the makespan of the job shop to be
solved (Carlier, 1982).

2.5 Standard Makespan Minimization Procedure

It is well known that a minimum makespan sched-
ule can be obtained from the set of active schedules.
This study therefore attempts to find a minimum make-
span schedule based on Giffler and Thompson’s active
schedule generation algorithm. Hopeless partial sched-
ules are pruned based on the lower bound. The optimal
schedule is the last schedule produced by the procedure.
The initial value of upper bound ub for the makespan is
the makespan of the SPT (Shortest Processing Time)
schedule applied to the original problem. The proposed
procedure is as follows:
0 : Let S be the set of operations that can be sched-

uled. Initially the elements in S represent the first
operation of all jobs.

1 : Calculate the head and tail times for all operations.
If at least one of the following two unsuccessful
conditions is satisfied, stop the search under the
current node, go back to the immediate parent
problem, and then go to 5 after selecting an un-
solved sub-problem based on the priority de-
scribed in .4.2
• For any operation c, the following condition is

satisfied.

c cc ubph t+ + ≥ (1)

• The lower bound given by JPS is equal to, or
greater than ub.

2 : Let g be an operation that yields (),min j S j jph∈ +
and m̂ be the machine on which g must be proc-
essed.

3 : Let 'S be a subset of operations in S where the
head time is less than ()g gph + and must be proc-
essed on machine m̂ .

4 : If ' 1S = then go to 4.1 , otherwise go to 4.2 .
4.1 : Remove the operation in 'S from S, and add its

job-successor operation to S, if it exists. Go to 5 .
4.2 : Generate 'S sub-problems by assigning each ope-

ration in 'S as the first operation for processing.
More precisely, if operation ' 'g S∈ is selected as
the first operation, then the unscheduled opera-
tions that must be processed on m̂ are all sched-
uled after '.g Thus, the direction of disjunctive
arcs between them is determined. Operation 'g is

removed from S, and the job-successor operation
of 'g is added to S, if it exists. After generating

'S sub-problems, assign priorities to sub-pro-
blems based on the following criteria, select the
one with the highest priority, and store other sub-
problems. Go to 5 .
[Priority criteria]
First: The lower bound for the makespan calcu-

lated by considering all the machines in
each sub-problem.

Second: The lower bound for the makespan on
machine m̂ .

Third: The head time for the selected operation.
Fourth: The tail time for the selected operation.

A smaller value in the above criteria means a
higher priority except for the fourth criterion. If
two or more sub-problems are given the same pri-
ority based on the first criterion, then use the sec-
ond criterion, and then the third, and lastly the
fourth.

5 : If S is not empty then go back to 1 . Otherwise,
the procedure finds a feasible schedule. If the
makespan of the schedule, ',T is less than ub,
then output the current schedule, and set '.ub T=
Go back to the immediate parent problem, and
continue the search if there is an unsolved sub-
problem.

3. A FLEXIBLE BRANCH AND BOUND
METHOD

3.1 Explanatory Example

Let us minimize the makespan, Cmax, of problem
la04, a famous benchmark problem with 10 jobs (A to J)
and 5 machines (M0 to M4) using a depth-first branch
and bound method. The search tree of this problem is
shown in Figure 2 (a). As this problem has 50 operations,
the number of levels becomes 50, and a first feasible
solution obtained is shown in Figure 2 (b) of which
makespan is 638. By analyzing the search thoroughly,
we can find a better feasible solution (Cmax = 628) if
we select the second sub-problem generated on level 24
as shown in Figure 2 (c). A further improvement on the
makespan is realized by selecting the second sub-pro-
blem generated on level 9 shown in Figure 2 (d). An
optimal schedule that realizes Cmax = 590 shown in
Figure 2 (e) is obtained by selecting the second sub-
problem generated on level 8.

If we can go back to the node ‘sub 8-2’, the second
sub-problem on level 8, immediately after obtaining the
first feasible schedule, a certain amount of useless sea-
rch could be eliminated. However, it is difficult to find
nodes that can lead to better schedules from a feasible
schedule on hand. It is well-known that in order to re-
duce the makespan of a schedule, we need to change the

242 Katsumi Morikawa·Katsuhiko Takahashi

Level
1
2

9

24

50

8

Cmax
= 638

Cmax
= 628

Cmax
= 595

Cmax
= 590 = Optimal

Sub
24-2

Sub
9-2

Sub
8-2

Root

(a) Search tree of problem 1a04

(b) Initial feasible schedule (Cmax = 638)

(c) An improved schedule (Cmax = 628) generated from

sub-problem (24-2)

(d) An improved schedule (Cmax = 595) generated from

sub-problem (9-2)

(e) Optimal schedule (Cmax = 590) generated from sub-

problem 8-2

Figure 2. Search tree and four schedules found along with
the search.

processing order of jobs on the critical path (Brucker et
al., 1994). The critical path in the initial schedule is
shown in Figure 2 (b) with gray bold lines, i.e., the star-
ing job is B on M1, and after visiting M3, and M0, the
last job is G on M4. The sub-problem 24-2 corresponds
to the assignment of job G on M2 after finishing the
processing of F. However, without complicated exami-
nations, it is difficult to find why starting job G earlier
could produce a better schedule. Similarly, the effect of

starting job I earlier on M4 (sub-problem 9-2) is not so
clear. Probably a skilled scheduler can find that by start-
ing job I on M4 at time 96, the remaining operations of
job I on M0, M1, and M3 can be started earlier and
these movements can utilize unused time intervals in-
volved in the current schedule. The sub-problem 8-2
fixes the start of job F on M3 immediately after B. As
job F is involved in the critical path, this sub-problem
can be considered as a hopeful node.

3.2 Algorithm of the Flexible Branch and Bound

3.2.1 Sub-problem handling mechanism

As sub-problems generated through a depth-first
search are examined in LIFO (last-in, first-out) manner,
it is a good way to use a stack to store sub-problems. A
sub-problem has (i) the set of operations, S, to be con-
sidered on this level, (ii) the selected operation to be
scheduled on this node, and (iii) the current condition of
the graph. Under the standard depth-first branch and
bound method, the graph information can be maintained
by using arrays for storing directed disjunctive arcs
added from the root node to the current node. Each sub-
problem can retrieve the graph information by storing
the indices for these arrays. Storing head and tail times,
and lower bound is also desirable to reduce the compu-
tational burden.

If we need to divide the stack of sub-problems into
two parts, however, a dual-linked list structure instead
of a general array-based stack is useful. In addition we
need an array for storing lists of unsolved sub-problems.
Figure 3 (a) shows the storing structure of sub-problems
ready for sub-problem separations. Figure 3 (b) indica-
tes a case that after finding a feasible schedule, the node
‘sub 24-2’ is selected as a backtracking node. The list of
sub-problems stored in the main is shortened, and the
unexamined sub-problems are stored in the 1st element
of the array with the value of lower bound for later ex-
plorations. The last sub-problem element must hold the
current graph information in full form as shown in Fig-
ure 3 (b). The word full form means that all directed
disjunctive arcs added from the root node to the current
node are stored. When starting the search from a stored
sub-problem, the graph information with it is first over-
written to the current graph information and the search
is then activated.

3.2.2 Backtracking node decision

The flexible branch and bound method needs solu-
tions to the following questions: (i) when the search
engine calls a halt to the current search, and (ii) which
node to backtrack. As these questions are difficult to
solve perfectly, we introduce simple methods as answers
to these questions.

The stopping condition for the current ordinal search
is defined as follows: if the number of sub-problems
taken from the main list without improving the current
feasible solution reaches a pre-specified threshold value,

 A Flexible Branch and Bound Method for the Job Shop Scheduling Problem 243

stop the current search. On the other hand, the back-
tracking point is decided by the following two methods:

Method CP: Based on the critical path of the current

best feasible schedule, start the search from the bot-
tom of the list, and find a sub-problem of which the
selected operation belongs to a block of the critical
path, and it can be started by the start time of the
first operation of the block. A block is a set of two
or more operations on the critical path to be proc-
essed on a machine successively. If there is no such
operation, then repeat the search to find a sub-
problem of which the selected operation belongs to
the critical path.

Method LB: First find the minimum lower bound from
sub-problems in the main list, and then find the
sub-problem with the minimum lower bound and
the maximum level number.

Method CP considers the critical path of the current

best feasible schedule, while Method LB focuses on the

lower bound of the sub-problems. As described in sec-
tion 3.1, focusing on the critical path is reasonable but it
is not enough in general. In addition, there is no guaran-
tee that at least one sub-problem can be found by Me-
thod CP. Therefore, Method LB is also introduced that
considers the lower bound, an important value when
realizing an efficient search in branch and bound. When
applying Method CP, if Method CP cannot find a sub-
problem, then Method LB is invoked after that. There-
fore, this combined method is termed Method CP & LB
hereafter.

3.2.3 Control mechanism of flexible branch and
bound

Our proposed method differs from the standard
branch and bound method in several points. Basically
sub-problems in the main list are solved by the standard
depth-first branch and bound manner. When the number
of sub-problems in the main list reaches zero, however,
one sub-problem list from the array with minimum lower
bound is moved to the main list and then the search en-

Sub
1-2

Sub
2-4

Sub
24-2

Sub
26-4

Sub
43-2

Sub
48-2

Sub
48-2

Sub
1-2

Sub
2-4

Sub
26-4

Sub
26-3

Sub
24-2

Stack of sub-problems
(dual-linked style)

Main list Array of sub-problem list

Top Top Top
Last Last

Last
1st sub-problem list 2nd

LB

Current graph data

(a) Standard method (b) Proposed method

Store in array with current graph data

Figure 3. Example to illustrate the structure for storing sub-problems.

244 Katsumi Morikawa·Katsuhiko Takahashi

gine examines this moved list, if at least one sub-pro-
blem list exists in the array.

The normal LIFO operation to the sub-problems in
the main list is interrupted when the number of sub-
problems solved without improving the current best
solution reaches a pre-specified threshold value. A sub-
problem is then selected from the main list as a back-
tracking point by Method CP or Method LB, and a list
of unsolved sub-problems under the selected sub-problem
is moved to the array, and the search is started from the
backtracking point. When moving the list of unsolved
sub-problems, the graph information is attached to the
bottom of the list, and the value of lower bound of this
list is also stored. If there is no space in the array, then
continue the search of the current list in the main list, or
exchange the list of sub-problems between the main list
and one in the array based on the lower bound of them.
The search is applied to the list of sub-problems with a
smaller lower bound value. These modifications to the
standard branch and bound method are summarized in
Figure 4.

Figure 4. Steps modified from the standard depth-first

branch and bound method.

4. NUMERICAL EXPERIMENT

4.1 Purpose of Experiment and Problems Solved

Although the flexible branch and bound method is

expected to find better schedules faster than the standard
branch and bound method, its actual performance cannot
be discussed without solving several benchmark prob-
lems. In addition, the performance of the proposed me-
thod may depend on the value of parameters, and meth-
ods of selecting a backtracking point. In this experiment,
we focus on Method CP& LB and Method LB, both
decide the backtracking node, and parameter values were
fixed based on preliminary experiments.

Forty-four job-shop scheduling problems presented by
Lawrence (la01-la40), Adams et al. (abz5, abz6), and Fi-
sher and Thompson (ft10, ft20) were firstly selected. A
preliminary experiment revealed that 21 problems (la01-
15, la31-35, and ft20) could be solved optimally by the
standard branch and bound method described in section
2.5 in a short time. Therefore we applied two backtrack-
ing methods to the remaining 23 problems. The program
was written in Java language, and the experiment was
conducted using Java 2 SDK 1.6.0 by Sun Microsystems,
Inc. on a notebook computer with a Pentium M, 2.0-
GHz CPU. The length of the array for storing sub-
problem lists was 10, and the threshold value to inter-
rupt the current search was 100,000. All computations
were terminated after five minutes of searches if the
flexible branch and bound method could not find an
optimal solution with the confirmation of its optimality.

4.2 Results and Discussion

The values of minimum makespan found or con-
sumed computation times using Method CP&LB and
Method LB are summarized in Table 1. This table also
includes the best makespan found within five minutes
by the standard branch and bound method, and by ap-
plying the history-guided search method both reported
in Morikawa et al. (2005). Please note that these results
were obtained on a personal computer with a Pentium 4,
2.6-GHz CPU. The history-guided search accelerated
searches in 13 out of 23 problems, but the optimal solu-
tion was found only in one problem.

A clear difference in best solutions between Method
CP & LB and Method LB could not be found at a first
glance. Method CP & LB found better solutions in 6
problems, while Method LB in 9 problems. Both meth-
ods found the same solutions in terms of the makespan
in 8 problems. However, if the problems are divided into
two cases; n = m, and n > m, then Method CP&LB pro-
duced better results in 5 problems, the same results in 7
problems, and a worse result in 1 problem under n = m.
On the other hand, Method LB performed better in 8
problems, found the same solution in 1 problem, and
could not find a better solution in 1 problem under the
condition of n > m. From the numbers of backtracking
points decided by Method CP and Method LB shown in
the column of Method CP&LB, we can find that Method
CP almost determined the backtracking points under n >

 A Flexible Branch and Bound Method for the Job Shop Scheduling Problem 245

m. On the contrary, Method LB was often activated in
Method CP&LB under n = m. From these results we can
expect that blending these two methods properly will
realize a more efficient search.

Table 1 indicates that as an exact optimization pro-
cedure, the performance of the proposed flexible branch
and bound method was not so stable but it produced the
same or better solutions than the solutions found by the
history-guided branch and bound method. The history-
guided branch and bound found a better schedule for
problems la19 and ft10, solved la23 quickly, and per-
formed better than Method CP&LB or Method LB in 3
problems. However, the proposed flexible branch and
bound often found better schedules in earlier stages of
the search, particularly in 10-machine problems with 15
or 20 jobs. Method LB found optimal schedules of prob-
lems la23 and la30 within about two minutes including
the guarantee of the optimality. Method CP&LB also
solved la23 optimally. Under these scale problems, the
backtracking to upper nodes accelerated the search to
some extent. For 15-job, 15-machine problems, never-

theless, the effect of proposed backtracking was limited.
More elaborated methods that find a good backtracking
point and guide the search from that point will be re-
quired to solve this scale problems.

Table 2. Computation time (in seconds) required to obtain

an optimal solution and confirm its optimality.

la18 la19 la20 abz5 abz6
[2425s] [2712s] [6452s] [21434s] [342s]

The smallest scale of the problems shown in Table

1 is 10 jobs and 10 machines, and the proposed method
found optimal solutions in two problems; la18 and abz6.
However, the optimality of these solutions could not be
proved in five minutes. Therefore an additional lengthy
experiment was implemented to further investigate the
proposed flexible branch and bound method as a strict
optimization method by solving eight problems with 10
jobs and 10 machines. Based on the discussion descri-
bed above, the backtracking node is firstly decided ba-

Table 1. Best makespan or computation time (in seconds) within five minutes of computation.†1

n×m Name Optimal†3 Method CP
& LB†4 Method LB Standard

 B & B†2
History-guided

B & B†2
10×10 la16 945 975 (3, 7) 968 988 979
10×10 la17 784 792 (7, 4) 792 792 792
10×10 la18 848 848 (4, 7) 854 859 854
10×10 la19 842 854 (2, 8) 854 846 846
10×10 la20 902 907 (5, 5) 908 915 915
15×10 la21 1046 1101 (9, 0) 1092 1193 1128
15×10 la22 927 974 (3, 1) 969 1029 994
15×10 la23 1032 [51s] (0, 0) [51s] [65s] [19s]
15×10 la24 935 970 (4, 1) 967 985 985
15×10 la25 977 1023 (6, 0) 1036 1054 1048
20×10 la26 1218 1290 (6, 0) 1274 1290 1290
20×10 la27 1235 1356 (4, 0) 1321 1371 1353
20×10 la28 1216 1234 (6, 0) 1229 1251 1245
20×10 la29 (1153) 1278 (4, 0) 1244 1291 1278
20×10 la30 1355 1394 (6, 0) [122s] 1394 1390
15×15 la36 1268 1331 (1, 3) 1332 1350 1331
15×15 la37 1397 1449 (0, 3) 1449 1449 1449
15×15 la38 1196 1295 (4, 0) 1295 1295 1295
15×15 la39 1233 1289 (4, 0) 1289 1289 1289
15×15 la40 1222 1301 (2, 1) 1301 1386 1345
10×10 abz5 1234 1238 (8, 2) 1249 1238 1238
10×10 abz6 943 943 (1, 8) 943 966 966
10×10 ft10 930 952 (3, 7) 958 956 947

Note) †1 If an optimal schedule was found and its optimality was confirmed within five minutes, then the computation time in
seconds is shown within square brackets. (Problems la23 and la30).

 †2 These results are adopted from Morikawa et al. (2005).
 †3 The value 1153 in parenthesis in problem la29 means that this is the best known value.
 †4 The numbers in parentheses are the number of backtracking nodes decided by Method CP, and Method LB, respec-

tively.

246 Katsumi Morikawa·Katsuhiko Takahashi

sed on the critical path of the current best feasible sche-
dule, and the size of the space for storing sub-problem
lists was set to 10,000 in order to avoid the additional
computational burden caused by list exchange opera-
tions. The computation time was limited to six hours,
and the required time to find an optimal solution and
then confirm its optimality was obtained. In this experi-
ment, the proposed method found optimal solutions of
all these problems. This fact reinforces the validity of
the proposed flexible branch and bound method as an
optimization approach. In terms of the computation time,
on the other hand, the method did not terminate in six
hours in problems la16, la17, and ft10. Table 2 indicates
the computation time of other five problems. The mini-
mum time was less than six minutes, while the maxi-
mum time was nearly six hours. This result indicates the
difficulty of confirming the solution optimality within
the active schedule generation mechanism alone desc-
ribed in section 2.5.

5. CONCLUSION

A flexible depth-first branch and bound method
that can indicate a higher backtracking node, and store
the remaining unsolved sub-problems to later explora-
tions is proposed in this study. The focused problem is
the makespan minimization of job shops based on Gif-
fler and Thompson’s active schedule generation algo-
rithm. Two methods are proposed for deciding back-
tracking points. One is based on the critical path of the
current best feasible solution, and the other is on the
lower bound for the makespan of unsolved sub-pro-
blems. A dual-linked list structure is introduced for di-
viding and retrieving unsolved sub-problems easily. Ac-
celeration of the search by the flexible branch and bound
is confirmed by numerical experiment.

Further acceleration will be achievable by utilizing
other beneficial information involved in the feasible
schedules. In addition the priority assignment rule among
sub-problems has also impact on the search speed. Ex-
haustive examinations of experimental results will give
some suggestions for resolving these issues. Applying
the flexible branch and bound under other branching stra-
tegies may be also an interesting research theme.

ACKNOWLEDGMENT

This research was partially supported by the Japan

Society for the Promotion of Science with a Grant-in-
Aid for Scientific Research, 19510149. The authors are
grateful to Mr. Kazuya Hasegawa for preparing an ex-
planatory example.

REFERENCES

Brinkkötter, W. and Brucker, P. (2001), Solving open
benchmark instances for the job-shop problem by
parallel head-tail adjustments, Journal of Schedul-
ing, 4, 53-64.

Brucker, P., Jurisch, B., and Sievers, B. (1994), A branch
and bound algorithm for the job-shop scheduling
problem, Discrete Applied Mathematics, 49, 107-
127.

Carlier, J. (1982), The one-machine sequencing problem,
European Journal of Operational Research, 11, 42-
47.

Carlier, J. and Pinson, E. (1989), An algorithm for solv-
ing the job-shop problem, Management Science, 35,
164-176.

Giffler, B. and Thompson, G. L. (1960), Algorithms for
solving production-scheduling problems, Opera-
tions Research, 8, 487-503.

Guéret, C., Jussien, N., and Prins, C. (2000), Using intel-
ligent backtracking to improve branch-and-bound
methods: An application to open-shop problems, Eu-
ropean Journal of Operational Research, 127, 344-
354.

Kawata, Y., Morikawa, K., Takahashi, K., and Naka-
mura, N. (2003), Robustness optimization of the
minimum makespan schedules in a job shop, Inter-
national Journal of Manufacturing Technology and
Management, 5, 1-9.

Morikawa, K., Takahashi, K., and Tabata, K. (2005),
Branch and bound based makespan minimization
in job shops guided by search history, Proceedings
of the 18th International Conference on Production
Research, Salerno, Italy, (in CD-ROM).

Perregaard, M. and Clausen, J. (1998), Parallel branch-
and-bound methods for the job-shop scheduling
problem, Annals of Operations Research, 83, 137-
160.

Pezzella, F. and Merelli, E. (2000), A tabu search method
guided by shifting bottleneck for the job shop sche-
duling problem, European Journal of Operational
Research, 120, 297-310.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

