• Title/Summary/Keyword: Boundary-Value Problems

Search Result 368, Processing Time 0.031 seconds

Large deflection behavior and stability of slender bars under self weight

  • Goncalves, Paulo B.;Jurjo, Daniel Leonardo B.R.;Magluta, Carlos;Roitman, Ney;Pamplona, Djenane
    • Structural Engineering and Mechanics
    • /
    • v.24 no.6
    • /
    • pp.709-725
    • /
    • 2006
  • In this paper the buckling and post-buckling behavior of slender bars under self-weight are studied. In order to study the post-buckling behavior of the bar, a geometrically exact formulation for the non-linear analysis of uni-directional structural elements is presented, considering arbitrary load distribution and boundary conditions. From this formulation one obtains a set of first-order coupled nonlinear equations which, together with the boundary conditions at the bar ends, form a two-point boundary value problem. This problem is solved by the simultaneous use of the Runge-Kutta integration scheme and the Newton-Raphson method. By virtue of a continuation algorithm, accurate solutions can be obtained for a variety of stability problems exhibiting either limit point or bifurcational-type buckling. Using this formulation, a detailed parametric analysis is conducted in order to study the buckling and post-buckling behavior of slender bars under self-weight, including the influence of boundary conditions on the stability and large deflection behavior of the bar. In order to evaluate the quality and accuracy of the results, an experimental analysis was conducted considering a clamped-free thin-walled metal bar. As this kind of structure presents a high index of slenderness, its answers could be affected by the introduction of conventional sensors. In this paper, an experimental methodology was developed, allowing the measurement of static or dynamic displacements without making contact with the structure, using digital image processing techniques. The proposed experimental procedure can be used to a wide class of problems involving large deflections and deformations. The experimental buckling and post-buckling behavior compared favorably with the theoretical and numerical results.

THE VARIATIONAL HOMOTOPY PERTURBATION METHOD FOR ANALYTIC TREATMENT FOR LINEAR AND NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS

  • Matinfar, Mashallah;Mahdavi, M.;Raeisi, Z.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.845-862
    • /
    • 2010
  • In a recent paper, M.A. Noor et al. (Hindawi publishing corporation, Mathematical Problems in Engineering, Volume 2008, Article ID 696734, 11 pages, doi:10.1155/2008/696734) proposed the variational homotopy perturbation method (VHPM) for solving higher dimentional initial boundary value problems. In this paper, we consider the proposed method for analytic treatment of the linear and nonlinear ordinary differential equations, homogeneous or inhomogeneous. The results reveal that the proposed method is very effective and simple and can be applied for other linear and nonlinear problems in mathematical.

Description of reversed yielding in thin hollow discs subject to external pressure

  • Alexandrov, Sergei E.;Pirumov, Alexander R.;Jeng, Yeau-Ren
    • Structural Engineering and Mechanics
    • /
    • v.58 no.4
    • /
    • pp.661-676
    • /
    • 2016
  • This paper presents an elastic/plastic model that neglects strain hardening during loading, but accounts for the Bauschinger effect. These mathematical features of the model represent reasonably well the actual behavior of several materials such as high strength steels. Previous attempts to describe the behavior of this kind of materials have been restricted to a class of boundary value problems in which the state of stress in the plastic region is completely controlled by the yield stress in tension or torsion. In particular, the yield stress is supposed to be constant during loading and the forward plastic strain reduces the yield stress to be used to describe reversed yielding. The new model generalizes this approach on plane stress problems assuming that the material obeys the von Mises yield criterion during loading. Then, the model is adopted to describe reversed yielding in thin hollow discs subject to external pressure.

An Application of Time Discontinuous Finite Element Method for Heat Conduction Problems (열전도 방정식의 시간 불연속 유한요소법 적용)

  • Kim, Chi-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.3
    • /
    • pp.87-92
    • /
    • 2008
  • A finite element method which is discontinuous in time is developed for the solution of the classical parabolic model of heat conduction problems. The approximations are continuous with respect to the space variables for each fixed time, but they admit discontinuities with respect to the time variable at each time step. The method is superior to other well-known approaches to these problems in that it allows a wider range of moving boundary value problems to be dealt with, such as are encountered in complex engineering operations like ground freezing. The method is applied to one-dimensional and two-dimensional heat conduction problems in this paper, although it could be extended to more higher dimensional problems. Several example problems are discussed and illustrated, and comparisons are made with analytical approaches where these can also be used.

POSITIVE SOLUTIONS FOR MULTIPOINT BOUNDARY VALUE PROBLEMS WITH ONE-DIMENSIONAL p-LAPLACIAN OPERATOR

  • Xu, Fuyi;Meng, Zhaowei;Zhao, Wenling
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.457-469
    • /
    • 2008
  • In this paper, we study the existence of positive solutions for the following nonlinear m-point boundary value problem with p-Laplacian: $\{{{{(\phi_p(u'))'\;+\;f(t,u(t))=0, \;0<t<1,} \atop u'(0)={\sum}{^{m-2}_{i=1}}\;a_iu'(\xi_i),} \atop u(1)={\sum}{^k_{i=1}}\;b_iu(\xi_i)\;-\;{\sum}{^s_{i=k+1}}\;b_iu(\xi_i)\;-\;{\sum}{^{m-2}_{i=s+1}}\;b_iu'(xi_i),}$ where ${\phi}_p(s)$ is p-Laplacian operator, i.e., ${\phi}_p(s)=\mid s\mid^{p-2}s$, p>1, ${\phi}_q\;=\;({\phi}_p)^{-1}$, $\frac{1}{p}+\frac{1}{q}=1$, $1\;{\leq}\;k\;{\leq}\;s\;{\leq}m\;-\;2$, $b_i\;{\in}\;(0,+{\infty})$ with $0\;<\;{\sum}{^k_{k=1}}\;b_i\;-\;{\sum}{^s_{i=k+1}}\;b_i\;<\;1$, $0\;<\;{\sum}{^{m-2}_{i=1}}\la_i\;<\;1$, $0\;<\;{\xi}_1\;<\;{\xi}_2\;<\;{\cdots}\;<\;{\xi}_{m-2}\;<\;1$, $f\;{\in}\;C([0,\;1]\;{\times}\;[0,\;+{\infty}),\;[0,\;+{\infty}))$. We show that there exists one or two positive solutions by using fixed-point theorem for operator on a cone. The conclusions in this paper essentially extend and improve the known results.

  • PDF

EXISTENCE OF NONNEGATIVE SOLUTIONS FOR BOUNDARY VALUE PROBLEMS

  • Kim, RakJoong
    • Korean Journal of Mathematics
    • /
    • v.17 no.4
    • /
    • pp.495-505
    • /
    • 2009
  • By means of Green function and fixed point theorem related with cone theoretic method we show that there exist multiple nonnegative solutions of a Dirichlet problem $$\array{-[p(t)x^{\prime}(t)]^{\prime}={\lambda}q(t)f(x(t)),\;t{\in}I=[0,\;T]\\x(0)=0=x(T)}$$, and a mixed problem $$\array{-[p(t)x^{\prime}(t)]^{\prime}={\mu}q(t)f(x(t)),\;t{\in}I=[0,\;T]\\x^{\prime}(0)=0=x(T)}$$, where ${\lambda}$ and ${\mu}$ are positive parameters.

  • PDF

A MATRIX FORMULATION OF THE TAU METHOD FOR FREDHOLM AND VOLTERRA LINEAR INTEGRO-DIFFERENTIAL EQUATIONS

  • Aliabadi, M.-Hosseini;Shahmorad, S.
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.667-677
    • /
    • 2002
  • In this paper we obtain the matrix Tau Method representation of a general boundary value problem for Fredholm and Volterra integro-differential equations of order $\nu$. Some theoretical results are given that simplify the application of the Tau Method. The application of the Tau Method to the numerical solution of such problems is shown. Numerical results and details of the algorithm confirm the high accuracy and user-friendly structure of this numerical approach.

BOUNDARY VALUE PROBLEMS FOR THE STATIONARY NORDSTRÖM-VLASOV SYSTEM

  • Bostan, Mihai
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.4
    • /
    • pp.743-766
    • /
    • 2010
  • We study the existence of weak solution for the stationary Nordstr$\ddot{o}$m-Vlasov equations in a bounded domain. The proof follows by fixed point method. The asymptotic behavior for large light speed is analyzed as well. We justify the convergence towards the stationary Vlasov-Poisson model for stellar dynamics.

NUMERICAL SOLUTIONS FOR MODELS OF LINEAR ELASTICITY USING FIRST-ORDER SYSTEM LEAST SQUARES

  • Lee, Chang-Ock
    • Korean Journal of Mathematics
    • /
    • v.7 no.2
    • /
    • pp.245-269
    • /
    • 1999
  • Multigrid method and acceleration by conjugate gradient method for first-order system least squares (FOSLS) using bilinear finite elements are developed for various boundary value problems of planar linear elasticity. They are two-stage algorithms that first solve for the displacement flux variable, then for the displacement itself. This paper focuses on solving for the displacement flux variable only. Numerical results show that the convergence is uniform even as the material becomes nearly incompressible. Computations for convergence factors and discretization errors are included. Heuristic arguments to improve the convergences are discussed as well.

  • PDF