• Title/Summary/Keyword: Boundary integral element methods

Search Result 38, Processing Time 0.023 seconds

A Composite Method of Finite Element and of Boundary Integral Methods for the Magnetic Field Problems with Open Boundary (유한요소법 및 경계적분법의 혼합법에 의한 개 영역 자장문제 해석)

  • 정현교;함송엽
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.6
    • /
    • pp.396-402
    • /
    • 1987
  • A Composite method of finite element and boundary integral methods is introduced to solve the magnetostatic field problems with open boundary. Only the region of prime interest is taken as the compution region where the finite element method is applied. The boundary conditions of the region are dealt with using boundary integral method. The boundary integration in the boundary integral method is done by numerical and analytical techniques repectively. The proposed method is applied to a simple linear problem, and the results are compared with those of the finite element method and the analytic solutions. It is concluded that the proposed method gives more accurate results than the finite element method under the same computing efforts.

  • PDF

A Composite of FEM and BIM Dealing with Neumann and Dirichlet Boundary Conditions for Open Boundary magnetic Field Problems (개량역 자장간의 해석에 있어서 Neumann 및 Diichlet 경계조건을 고려한 유한요소법 및 경계적분법)

  • 정현교;한송엽
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.11
    • /
    • pp.777-782
    • /
    • 1987
  • A new composite method of finite element and boundary integral methods is presented to solve the two dimensional magnetostatic field problems with open boundary. The method can deal with the current source of the boundary integral regin where the boundary integral method is applied, and also Neumann and Dirichlet boundary conditions at the interfacial boundary between the boundary integral region and the finite element region where the finite element method is applied. The new approach has been applied to a simple linear problem to verify the usefulness. It is shown that the proposed algorithm gives more accurate results than the finite element methed under the same elementdiscretization.

  • PDF

On the Vibration Analysis of the Floating Elastic Body Using the Boundary Integral Method in Combination with Finite Element Method

  • K.T.,Chung
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.4
    • /
    • pp.19-36
    • /
    • 1987
  • In this research the coupling problem between the elastic structure and the fluid, specially the hydroelastic harmonic vibration problem, is studied. In order to couple the domains, i.e., the structural domain and the fluid domain, the boundary integral method(direct boundary integral formulation) is used in the fluid domain in combination with the finite element method for the structure. The boundary integral method has been widely developed to apply it to the hydroelastic vibration problem. The hybrid boundary integral method using eigenfunctions on the radiation boundaries and the boundary integral method using the series form image-functions to replace the even bottom and free surface boundaries in case of high frequencies have been developed and tested. According to the boundary conditions and the frequency ranges the different boundary integral methods with the different idealizations of the fluid boundaries have been studied. Using the same interpolation functions for the pressure distribution and the displacement the two domains have been coupled and using Hamilton principle the solution of the hydroelastic have been obtained through the direct minimizing process. It has become evident that the finite-boundary element method combining with the eigenfunction or the image-function method give good results in comparison with the experimental ones and the other numerical results by the finite element method.

  • PDF

Application of Semi-infinite Boundary Element Method for Tunnel Vibration Analysis (터널 진동해석을 위한 반무한 경계요소법의 적용)

  • 김문겸;이종우;전제성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.128-136
    • /
    • 1994
  • In this study, dynamic boundary element method using mass matrix is derived, using fundamental solutions for the semi-infinite domain. In constituting boundary integral equations for the dynamic equilibrium condition, inertia term in the form of domain integral is transformed into boundary integral form. Corresponding system equations are derived, and a boundary element program is developed. In addition, equations for free vibration is formulated, and eigenvalue analysis is performed. The results from the dynamic boundary element analysis for a tunnel problem are compared with those from the finite element analysis. According to the comparison, boundary element method using mass matrix is consistent with the results of finite element method. Consequently, in tunnel vibration problems, it results in reasonable solution compared with other methods where relatively higher degree of freedoms are employed.

  • PDF

REMOVAL OF HYPERSINGULARITY IN A DIRECT BEM FORMULATION

  • Lee, BongJu
    • Korean Journal of Mathematics
    • /
    • v.18 no.4
    • /
    • pp.425-440
    • /
    • 2010
  • Using Green's theorem, elliptic boundary value problems can be converted to boundary integral equations. A numerical methods for boundary integral equations are boundary elementary method(BEM). BEM has advantages over finite element method(FEM) whenever the fundamental solutions are known. Helmholtz type equations arise naturally in many physical applications. In a boundary integral formulation for the exterior Neumann there occurs a hypersingular operator which exhibits a strong singularity like $\frac{1}{|x-y|^3}$ and hence is not an integrable function. In this paper we are going to remove this hypersingularity by reducing the regularity of test functions.

Elastic Wave Field Calculations (탄성파의 변형 및 응력 계산에 관한 연구)

  • 이정기
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.213-223
    • /
    • 1997
  • Calculation of elastic wave fields has important applications in a variety of engineering fields including NDE (Non-destructive evaluation). Scattering problems have been investigated by numerous authors with different solution schemes. For simple geometries of the scatterers (e.g., cylinders or spheres), the analysis of steady-state elastic wave scattering has been carried out using analytical techniques. For arbitrary geometries and multiple inclusions, numerical methods have been developed. Special finite element methods, e.g., the infinite element method and a hybrid method called the Global-Local finite element method have also been developed for this purpose. Recently, the boundary integral equation method has been used successfully to solve scattering problems. In this paper, a volume integral equation method (VIEM) is proposed as a new numerical solution scheme for the solution of general elasto-dynamic problems in unbounded solids containing multiple inclusions and voids or cracks. A boundary integral equation method (BIEM) is also presented for elastic wave scattering problems. The relative advantage of the volume and boundary integral equation methods for solving scattering problems is discussed.

  • PDF

Virtual boundary element-equivalent collocation method for the plane magnetoelectroelastic solids

  • Yao, Wei-An;Li, Xiao-Chuan;Yu, Gui-Rong
    • Structural Engineering and Mechanics
    • /
    • v.22 no.1
    • /
    • pp.1-16
    • /
    • 2006
  • This paper presents a virtual boundary element-equivalent collocation method (VBEM) for the plane magnetoelectroelastic solids, which is based on the fundamental solutions of the plane magnetoelectroelastic solids and the basic idea of the virtual boundary element method for elasticity. Besides all the advantages of the conventional boundary element method (BEM) over domain discretization methods, this method avoids the computation of singular integral on the boundary by introducing the virtual boundary. In the end, several numerical examples are performed to demonstrate the performance of this method, and the results show that they agree well with the exact solutions. So the method is one of the efficient numerical methods used to analyze megnatoelectroelastic solids.

PRECONDITIONING FOR THE p-VERSION BOUNDARY ELEMENT METHOD IN THREE DIMENSIONS WITH TRIANGULAR ELEMENTS

  • Cao, Wei-Ming;Guo, Benqi
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.2
    • /
    • pp.345-368
    • /
    • 2004
  • A preconditioning algorithm is developed in this paper for the iterative solution of the linear system of equations resulting from the p-version boundary element approximation of the three dimensional integral equation with hypersingular operators. The preconditioner is derived by first making the nodal and side basis functions locally orthogonal to the element internal bases, and then by decoupling the nodal and side bases from the internal bases. Its implementation consists of solving a global problem on the wire-basket and a series of local problems defined on a single element. Moreover, the condition number of the preconditioned system is shown to be of order $O((1+ln/p)^{7})$. This technique can be applied to discretization with triangular elements and with general basis functions.

Application of Initial Stress Method on Elasto-plastic Problem in Boundary Element Method (경계요소법의 탄소성문제에 대한 초기응력법의 적용)

  • Soo, Lyong-Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.6 s.150
    • /
    • pp.683-692
    • /
    • 2006
  • The BEM, known as solving boundary value problems, could have some advantages In solving domain problems which are mostly solved by FEM and FDM. Lately, in the elastic-plastic nonlinear problems, BEM could provide the subdomain approach for the region where the plastic deformation could occur and the unknown nodal displacement of this region are added as the unknown of the boundary integral equation for this approach. In this paper, initial stress method was used to establish the formulation of such BEM approach. And a simple rectangular plate having a circular hole was analyzed to verify the suggested method and the result is compared with that from FEM. It is shown that the result of two methods are showing similar stress-strain curves at the root of perforated plate and furthermore the plastic deformation obtained by BEM shows more reasonable behavior than that of FEM.

Analysis of Semi-Infinite Problems Subjected to Body Forces Using Nonlinear Finite Elements and Boundary Elements (물체력이 작용되는 반무한영역문제의 비선형유한요소-경계요소 조합해석)

  • Hwang, Hak Joo;Kim, Moon Kyum;Huh, Taik Nyung;Ra, Kyeong Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.45-53
    • /
    • 1991
  • The underground structure, which has infinite or semi-infinite boundary conditions, is subjected by body forces and in-situ stresses. It also has stress concentration, which causes material nonlinear behavior, in the vicinity of the excavated surface. In this paper, some methods which can be used to transform domain integrals into boundary integrals are reviewed in order to analyze the effect of the body forces and the in-situ stresses. First, the domain integral of the body force is transformed into boundary integral by using the Galerkin tensor and divergence theorem. Second, it is transformed by writing the domain integral in cylindrical coordinates and using direct integration. The domain integral of the in-situ stress is transformed into boundary integral applying the direct integral method in cylindrical coordinates. The methodology is verified by comparing the results from the boundary element analysis with those of the finite element analysis. Coupling the above boundary elements with finite elements, the nonlinear behavior that occurs locally in the vicinity of the excavation is analyzed and the results are verified. Thus, it is concluded that the domain integrals of body forces and in-situ stresses could be performed effectively by transforming them into the boundary integrals, and the nonlinear behavior can be reasonably analyzed by coupled nonlinear finite element and boundary element method. The result of this research is expected to he used for the analysis of the underground structures in the effective manner.

  • PDF