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PRECONDITIONING FOR THE p-VERSION
BOUNDARY ELEMENT METHOD IN THREE
DIMENSIONS WITH TRIANGULAR ELEMENTS

WEIMING CAO AND BENQI GUO

ABSTRACT. A preconditioning algorithm is developed in this paper
for the iterative solution of the linear system of equations resulting
from the p-version boundary element approximation of the three
dimensional integral equation with hypersingular operators. The
preconditioner is derived by first making the nodal and side basis
functions locally orthogonal to the element internal bases, and then
by decoupling the nodal and side bases from the internal bases. Its
implementation consists of solving a global problem on the wire-
basket and a series of local problems defined on a single element.
Moreover, the condition number of the preconditioned system is
shown to be of order O((1 +Inp)7). This technique can be applied
to discretization with triangular elements and with general basis
functions.

1. Introduction

It is well-known that for the solution of the linear algebraic systems
arising from the finite element and boundary element methods itera-
tive methods can be very efficient if suitable preconditioning is incorpo-
rated. Indeed, over the past decades, the preconditioned iterative meth-
ods based on domain decompositions have been developed and applied
widely for the finite element methods. For boundary element methods,
extensive studies have also been made recently. For instance, Tran and
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Stephan [20], Steinbach and Wendland [19], Heuer, Stephan and Tran
(13] studied the preconditioning methods for the h- and h-p versions
BEM for two dimensional boundary integral equations. More recently,
Heuer [11], Heuer and Stephan [12] also extended their study to the
three dimensional problems. In particular, in [11] an additive Schwarz
method is developed for the p-version boundary element approximation
of the hypersingular operator in three dimensions. Guo and Ainsworth
[1] presented a rigorous analysis of this method, and proved strictly that
the condition number of the preconditioned system can grow at most
polylogarithmically in p, where p is the polynomial degree used in the
p-version approximation. However, in the above work for three dimen-
sional problems, the preconditioners are built on special basis functions
that are tensorial products of one dimensional polynomials. Therefore,
the algorithm is applicable only to the discretization with quadrilat-
eral meshes. This limitation restricts greatly the applicability of the
BEM, since partition with triangular elements is one of the most pop-
ular choices in practice, and an analysis of preconditioning for the p-
version of the boundary element method with triangular elements is not
available in the literature.

In this paper, we intend to remove the aforementioned restriction on
the partition for building preconditioners in the case of the p-version
approximation of boundary integral equations with hypersingular op-
erators. We develop an algorithm that works with general partitions
and with general basis functions. The basic idea comes from the well-
known substructuring methods and additive Schwarz methods developed
in, e.g., [6, 7, 10, 15]. We group the basis functions into two types:
those associated with the element nodes and sides, or the so-called wire-
basket, and those associated with element interiors. We first minimize
the coupling between the two groups by a local orthogonalization pro-
cedure. Then the preconditioner is designed to retain only the coupling
between the wire-basket components and between the internal compo-
nents of each element. To multiply the preconditioner to a residual
vector, one needs to solve a global problem, which is associated with the
L%-projection on the wire-basket, and a series of local problems defined
only on a single element. The stiffness matrix of the global problem on
the wire-basket is in general tridiagonal, and the matrices of the local
problems have already been made available when the linear system of
equations for the BEM is formed. Thus the preconditioner is not expen-
sive to implement. As for the effectiveness of the algorithm, we prove
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that the condition number of the preconditioned system can grow at
most at the rate of O((1 + lnp)7).

The paper is organized as follows: in Section 2, we describe the model
problem and the p-version boundary element approximation of the model
problem. In Section 3, we introduce the preconditioner and its matrix
representation. In Section 4, a number of lemmas are presented, and
finally in Section 5 the condition number of the preconditioned system
is analyzed rigorously.

2. BEM for model problem

We first introduce some notation. Let © € R% d =1 or 2, be a
Lipschitz domain. Denote by L?(f2) the usual space of Lebesgue square
integrable functions. Its inner product and norm are denoted by (-, ) 2,
and || - ||,2.q,, respectively. Similarly, H'(2) denotes the usual Sobolev
space. H}(Q)) C HY(Q) consists functions vanishing on 99. The spaces

H %(Q) and H %(Q) are defined as the half-way interpolation between
L2(Q) and HY(Q), L3(Q) and H}(Q), respectively, refer to, e.g., [4].

According to [14], an equivalent norm for H 2 (©2) can be expressed as

lv(z) — v(y))?
|| “iIE(Q) = ||v||L2(XZ) / / ‘d+1 —— g —dz dy,

and the norm of Hz () is equivalent to

B o(z)]?
(1) 0123 g = 1912, 5 *+ /Q T

Model problem: Let I’ be an open or closed surface in R®. Let
1 9 1
Du@) = -5 | “@)a%(m) as,,
and define
(2) B(u,v) =< Du,v >, Yu,v € I:I%(I‘)
For a given data f € H ‘%(F), the boundary integral problem with the
hypersingular operator D is to find u € H 3 (I") such that

B(u,v) = f(v), Vve H¥().

Basis functions: For simplicity, we consider only that I' is a poly-
gon, which can be partitioned into triangles. Assume that I' = U} K,
where Kj;'s are the triangular elements. In particular, in the p-version
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approximation all elements are assumed shape regular and of diameter
O(1).

Now we describe the approximation subspace of H 3 (T'). Let p be a
positive integer. Denote by V,(I') the subspace of H %(I‘) consisting of
all the piecewise continuous polynomials of total degree < p. Suppose
further that V,,(T") can be spanned by the following three types of basis
functions:

Nodal bases. For each node n;, ¢ takes value 1 at the vertex n;
and 0 on all the elements not connected to n;;

Side bases: For each side s, ¢§s], 1 <5 <p-—1, are non-zero on side
s and vanish on all the elements not connected to s;

Internal bases: For each element K, QS[ZK], 1<¢<plp-1)/2, are 0
on all the elements except on K.

These basis functions are locally supported. Typically on each ele-
ment they are defined as the pull-back of standard shape functions on
a master element. We do not specify the choice of the basis functions,
as long as they can be grouped into the above three types. Most of the
commonly used shape functions satisfy this assumption [3].

Approximation subspaces: For the purpose of describing the pre-
conditioner later, we divide the basis functions according to their geo-
metric association. Let W, the so-called wire-basket, denote the union
of all the vertices and sides in the triangulation of I'. Define

V™M = gpan{all the nodal and side basis functions ¢™! and ¢;s]}

V¥l = span{all the internal basis functions ¢, associated with
element K}.

Then the approximation subspace can be expressed as
Vp([) = VM 4 Y "y,
VK

Galerkin approximation: The Galerkin approximation of (2) is to
find u, € V,(I') such that

(3) B(up,v) = f(v), Vv € V(T).

If we expand u, as a linear combination of the basis functions, and
arrange the unknowns according to their geometric associations, then

up = u™H{"™} + Z ul*{g!x1},
VK
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where u™ and u!®! are the unknowns associated with the wire-basket
W and the element K, respectively. Then we get the following linear

system of equations for the unknown u” = (w7, uFI? ulFEmT),
(4) Bu=f,
where
[ B(¢™, ™),  B(¢™M, piF1]), ... B(¢™, ¢l%ml)
B(¢[K1]’¢[K1])’ e B(¢{K1],¢[KM])
B =
symmetric ) et
B(¢F !, plmly
[ f (¢[[W]])
FAC )
F=1"
f(¢[KA1])

3. Preconditioning

To introduce the preconditioning algorithm for the iterative solution
of the linear system (4), we follow the ideas of the well-known substruc-
turing methods and Additive Schwarz Methods (ASM) for the finite ele-
ment methods, see [6, 7, 10, 15]. Under the framework of ASM, to define
a preconditioner it suffices to define a decomposition of the approxima-
tion space and a set of inner products associated with each subspace in
the decomposition.

New bases and decomposition of V,(I'): First we introduce a set
of new basis functions associated with the wire-basket.

New side basis: Let s be an element side in the partition, and let K3
and K> be the two elements sharing side s. Foreach 5 =1,...,p— 1,
we define the new side basis functions w;s] as follows:

() vl =e, on s;
(5) (i) ¢’ =0, on T'\ (K1 U K>);
(i) BM,v)=0, VveVilyyll

Note that w;sl is uniquely determined by its value on side s.
New nodal basis: Let n; be an element vertex in the partition. Let
Sp,; be the set of all the element sides connected to n;, and let I,, be the
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index set for the elements connected to n; . We define the new nodal
basis function 1! associated with vertex n; as follows:

(1) wlni] — ¢[”i]’ at ny;
o] G w0 on '\ (User,, Ko)
( ) (iii) (wlni]:v)LQ('y) =0, Ywe ’Pg(f)'): on Vy € Sni;

(iv) B(ij[.sl, v) =0, Yuv € UgelniV[Kf},
where ’PS(’y) is the set of polynomials on v of degree < p vanishing
at both ends of 4. The above definition of the new basis is similar to
a process of orthogonalization in the finite element methods [2, 5]. In
FEM the new nodal and side bases are orthogonal to all the internal
bases with respect to the inner product on the whole domain. This
property leads to the decoupling of the interface unknowns from the
internal ones. However, in BEMs the bilinear form B(:,-) is a double
integral. The bilinear product of two functions is not necessarily zero
even though their supports do not overlap. Therefore, the new nodal
and side bases are not orthogonal to the internal bases except those
associated with the elements next to the underlining side or node.
Define a new subspace associated with the wire-basket as follows:

(7)

V™ = span{all new nodal and side basis functions ¥ and 1/1;-3]}.
We then decompose the approximation space V,(I') as follows:

Vp(D) = VI 4+ " vis,
VK

Preconditioner: Suppose that r = (r1,79,...,7n5)7 is a residual

vector in the iterative solution procedure of the linear system (4). It de-
N

fines uniquely a residual function r(z) = > r;¢;(x) by the inner product

i=1
relation 7; = (7, ¢;) .21, where ¢; and r; are the i-th basis function and
the i-th component of r, respectively. To define a preconditioner C, it
suffices to describe the multiplication of C'~! with ». To this end, we
define a correction function u(x) € V,(I') (see below) and set C~'r as
the coefficients of the linear combination of u(x) in the basis {¢;}.
First, we define an inner product C(-,-) on V,(I') as follows: for any
u,v € Vp(T'), let

u=uW+ZuK, and U=UW+ZUK,
VK VK
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with wy,vw € VM and ux, v € VI, We define a bilinear form on
V() x Vp(T) as

(8) C(u,v) = (U, ¥w) 20wy + 3 Bluk, k).
VK

The correction u(x) is defined as the solution of

9) C(u,v) = (r,v), Vo € Vp(T).
N

Let the solution u(x) be expressed as u{x) = )_ u;di(x). Then we set
i=1

C'r =u = (uy,ug,...,uyn)".

We now consider the implementation of the above preconditioner. We
may solve (9) in terms of a number of sub-problems as follows:
First, compute the values of u,, € V™! on the wire-basket W by

(10) (uw, ) 2wy = (1,0), Vo e V.

This problem involves only the inversion of the matrix associated with
the L2-inner product on W. For popular choices of the basis functions
in practice, e.g., the anti-derivative of Legendre polynomials, or the
Lagrange basis of the Gauss-Lobatto interpolation, the corresponding
matrix is almost tridiagonal. Therefore, this subproblem can be solved
easily. Since functions in V™ are uniquely defined by their values on
W, u,y is well defined by (10).
Next, on each element K, solve for ux € V¥ from

(11) B(ug,v) = (r,v), Yo € V¥,
Finally, set u = u,, + Y ux, and expand it as a linear combination
V&

of the original basis functions {¢;}, with u as the expansion coefficients.
Then C™'r = u.

It is worth mentioning that the stiffness matrices in (11) is simply the
local stiffness matrix on element K, which has already been calculated
when the system (4) is formed. The inner products on the right hand
side of (11) are also the linear combination of inner products between
the original basis functions, which have been computed in forming (4).

REMARK 3.1. Although the preconditioner is described only for tri-
angular elements, it is also applicable to partitions with quadrilateral
elements. Indeed, with quadrilateral elements, the basis functions can
also be grouped into nodal, side and internal types. Therefore, the
preconditioner and the condition number analysis are the same as for
triangular elements.
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REMARK 3.2. In the bilinear form C(-,-), the L2-inner product for the
wire-basket component u,, can be replaced by equivalent ones, e.g., the
discrete L2-inner product based on Gauss-Lobatto quadrature formulas.
All the conclusions will remain unchanged. Moreover, such a treatment
can lead to a diagonal system when solving (10) to calculate the wire-
basket components.

Matrix representation of C: It is helpful to describe the matrix
representation of the preconditioner defined above by the bilinear form
C(-,-). Denote by {¢™'} and {y™'} the set of all the original and
new basis functions associated with the wire-basket, respectively, and by
{9} = { {oF11}, ..., {¢"27} } the set of the internal basis functions
on all the elements. Then we may express the change of basis functions
from {¢™'} to {¢p™} as

{¢™1} = Rw {¢™} + Ric {¢"},

where R,, and Ry are rectangular transformation matrices. Let the
solution wuy(x) of the p-version approximation (3) be expressed as

up(:c) — u[W]{d)[W]} + u[K]{¢[K]} _— ﬁ[Wl{w[WJ} + ﬁ[K]{(b{K]}.

Then the unknown @’ = (@™, @) is related to the unknown u® =

(™, a7y by u = Q@ with
[ Ry R
=[]

The linear system of equations for the unknown u is

(12) Bu = f,
where
B=QBQ", and f=Qf.
B is indeed the stiffness matrix under the basis functions {/™} and

{¢*!}. The preconditioner defined by the bilinear form C(-,-) using the
new basis functions induces the following stiffness matrix

~ _ CWW O
¢= [ 0 Crx ]
with
B(¢[K1]7¢[K1]) 0
Cxr = )
0 B(¢[KM]’ ¢[KM])
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where Cyyyy is the stiffness matrix associated with the new basis func-
tions {¢)"'} and the L?(W)-inner product. Now multiplying C~* to (12)
is identical to multiplying C* to (4), with
-T A)-1 R;vT 0 2 R;vl _R;VIRK
C=Q70CQ _[—RﬁR;VT I]C[ 0 1 ]
This is the matrix representation of the preconditioner.

Comparing the matrices C and B, it is clear that the preconditioner
is essentially designed by deleting all the coupling between the wire-
basket components and the internal components, and all the coupling
between the internal components in the different elements. But this has
been done by using the new bases {1/}, instead of directly the original
bases {¢"1}. The reason is that for general basis functions, the coupling
between the wire-basket components and the internal components is
strong, a straightforward decoupling will not be effective. On the other
hand, the coupling between the internal bases in the different elements
is weak, therefore, the decoupling between different element internals is
viable.

A condition number estimate:

THEOREM. There exist positive constants ¢; and co depending on
the partition of ', but not on p, such that for all u € V,(I'),

c1(1+1np)2B(u,u) < Clu,u) < ca(1 + np)°B(u, u),
which implies that k(C™1B) < ¢(1 +Inp)".

REMARK 3.3. For a preconditioner proposed in [1] for the BEM of
(2), it is shown that the condition number of the preconditioned system
can be bounded by (1 + Inp)?. We emphasize that the estimate in the
above theorem is for a preconditioner working with general partitions
and general bases, while the result in [1] is with a special choice of the
basis and for quadrilateral elements. Technically, the extra power of Inp
results from an estimate of the H3-norm of the nodal and side func-
tions, refer to lemmas 4.10 and 4.11 below. In the case of quadrilateral
elements, the nodal and side basis function are given explicitly by the
tensor products of special one-dimensional bases. Their H 3-norms can
be estimated precisely by interpolating their L2- and H!'-norms, which
are calculated exactly; see Lemma 7 and Lemma 8 in [1]. For triangu-
lar elements, it is not clear how to estimate precisely the H%-norm of
the nodal and side functions. We conjecture that the estimates given in
lemmas 4.10 and 4.11 are not optimal, and that therefore the conclusion
of this theorem can be improved.
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4. Notation and basic lemmas

Let K be a triangular element, and let p be a positive integer. Let
Pp(K) be the set of polynomials of total degree < p, and let ’PS(K ) =
{v € Pp(K), and v =0 on 9K }. Furthermore, let v be a side of element
K, and let d(x, ) be the distance from a point € K toy. We introduce

the following subspace of H 3 (K):

H(K) = {v e H}(K)|

”v“Hé (K) - [HUHZ%(K) t ”(d(',’}'))_%v]jig(m]% < 00}

By the equivalent norm on H2 space (cf. (1)),

(13) HH(K) = Uearc Hi (K).

Also, let A be a vertex of the element K, and let d(x, A) be the distance
from x € K to A. We introduce

HI(K) = {v e HE(EK))|

_1 2 1
1905 g = U3 g+ 10 A0l < oo
We first present two lemmas about different norms on a single ele-
ment. To simplify the notation, we shall use “~” to denote that two
quantities are equivalent with each other with constants independent of
the functions involved. We shall also use “c” to denote a generic positive
constant independent of the polynomial degree p.

LEMMA 4.1. Let K be an element in the triangulation, and let v be
a side of K. For any v € Pp(K) vanishing on v, there exists a positive
constant ¢ independent of v and p such that

90,3 e, < B0l

Proof. See Lemma 5.9 of [17] or Lemma 4.7 of [5]. O

LEMMA 4.2. Let K be a triangular element, and let A be a vertex of
K. For any v € P,(K) vanishing at A, there exists a positive constant
¢ independent of v and p such that

1ol 5 e, S 0+ 3
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Proof. Without loss of generality, we assume that K = {(z,y) | 0 <
r <1,z <y <1} and that the vertex A = (0,0). Then it is easy to see

vl|? = 2 / |U dxd
O =

1 ’ 2 ho(a, )l

Now, we proceed in the same way as for the proof of Lemma 4.7 of [5].
We first study the following function

= [" 1t )P da.

By usmg Lemma 6.4 of [2] and a scaling argument, we have for any
y € (0, 3) that

y

F(y) < m(a)i) [v(z,y)|? dz < ¢(1 + Inp) / llv(z |[2 da:.
ye(x

Furthermore, by using the equivalent norm over H %(K ) (cf. [9]), we
have

15 Fly) <e(l+1 2 .
(15) oi{}i"f/g (y) <l +np)||v||H%(K)

Now, we may split the last integral on the right hand side of (14) into

/ P’
(16) /1 2ﬂ(‘y—)dyﬁ— /01/ Mdy.

1/p2 Y Y

Clearly, the first term of the above expression can be bounded by

1/2 1/2
/ F(y)d < max F(y)/ 1dy < c(1+Inp)?|v||? ,
1/p? Yy O<y<1/2 1/p HQ(K)

For the second term in (16), we note that F(0) = 0. It follows from the
mean value theorem that

dF
—F < - 2 2
” (v) o Jnax dy( Yy <c2p+1) r;la>1</2F( Y),
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where we have used the classical Markov’s inequality and the fact that
F' is a polynomial of degree < 2p + 1. Consequently,

17 F( 1/p*
) 2 /
—dy <c¢(2p+1)* m F d
/O y y < c(2p ) 0<y?<”1(/2 (v) A Yy

<c¢ max F
T O<y<1/2 (y)

< (1 +1Hp)”””iﬁ(m-

]

LEMMA 4.3. Let v € Pp(K), then there exists a positive constant c
independent of v and p, such that

2 2
(17) lvllz2e05) < {1+ Inp)HvHH%(K)-

Proof. We consider only the case K = {(z,y) | —1<z<1,-1<

y < —z}, and we prove only that
2 2
o120 < el + ol

where v = {(z,y) | —1 <z <0, y=—1} is half of the bottom side of
K. The L?(0K)-norm on the left hand side of (17) can be decomposed
and reduced to this case by using regular mappings.

Let I; = {-1 <z <0} and I, = {—1 < y < 0}. For each z € I, it
follows from Lemma 6.4 of [2] that

[vl@, ~DI* < o(@, i) < e+ p)lt 1,

Therefore,

0 0
o) < [ ot —DPdo < ct+0p) [ ot 2y, do
1 -1

= C(]. ‘}‘lnp)HU”iQ(I H%(I ))
x v

[
H3 (1)

By the fact that (see Proposition 2.1, page 7 of [14])
H3 (I, x L) = L3I, H3 (1)) N H (I, L(1,)),
we have eagsily

01220y < (1 +p)|v]? , <¢(1+1Inp)

2 2
Vet sy < oy 7y
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Now we consider the relation between the H3-norm of a function
over a union of elements and its norms over each element. Let w be the
union of an arbitrary set of n elements, n < M, denoted without loss of
generality as w = Lj_ K;. By the definition of the spaces, it is easy to
see that

(18) oy, )_Zn L
and
(19) sz o g STl

Note that the other d1rect10n of the above inequalities is not true (see
[1} for a counter example). However, it is possible to establish such re-
sults for functions in the finite dimensional subspace Vj(w) = {v|,, Vv €

Vp(I')} with some constants dependent of p. To this end we first intro-
duc.e an auxiliary mapping between two neighboring elements.

Affine-mirror mapping: Let K; and K3 be two triangular ele-
ments, and let K3 N Ky # §. Then there exists an affine mapping
Fi2 : K1 — K> such that Fig = I on Ky N Ky, Indeed, there are only
two cases as shown in Figure 1. In the left case, the affine mapping
maps A — A, B — B, and C — C; in the right case, it maps 4 — A4,
B — B, and C — (. We shall call this type of mapping affine-mirror
mapping. Clearly, we can also define the affine-mirror mapping Fy; from
Ky to Ky, and Fio = (FQl)

Affine-mirror transform: Suppose K1 N Ky # 0. Let v; be defined
on K. We may define v2(P) = v1(Fia(P)) for all P e Ky We call vy
the affine-mirror transform of v; and denote vy = Fp1{vy). Similarly,
we may define the affine-mirror transform F»; for functions on Ks. It is
obvious that Fig = (Fp1) ™!

Cs

B B’

Figure 1. Affine-mirror mapping between Ky and K3
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LEMMA 4.4. Let S be a compact set, and let f(P,Q) > 0 be continu-
ous on S X S except possibly when p = Q. Assume that

li P,Q) > 0.
P f(P,Q)

Then inf f(P,Q) > 0.
vP,Q

Proof. Suppose that infyp g f(P,Q) = 0. Then there exist sequences
{P,} and {Q,} in S such that f(P,,Q,) — 0. Since S is compact, we
may choose subsequences (still denoted by {r,} and {@,}) such that
they converge to P* and @* (both in §), respectively. Clearly, P* # Q*.
Therefore by continuity, f(P*,Q*) = nli)n;o f(Pn,Q,) = 0, which is in
contradiction to f >0 on S x S. O

LEMMA 4.5. Assume that K1 N Ky # 0 and v € H%(Kl). Let vy be
the affine-mirror transform of vy, ie., v2 = Fia(v1). Define v = v; on
Ki, 1= 1,2. Then

(20) = [ualf, 4

Proof. By va = Fa1(v1), and the fact that in the p-version all elements
are assumed fixed, we have readily from the definition of H 3-norm that

Now we prove the first equivalence relation in (20). Obviously,

1o 8 reyoma) 2 101t )
On the other hand,
(21)

A / /K | / /
/K/K /K/K <'U(P _Uf” )dSQ/ds,,,

Clearly the first two integrals on the right hand side of (21) are bounded
by ”UIHZ bk We consider the third one. Change the integration
1

variable @' — @ = F1(Q’'). Then dS, = }?}dSQ, where |K;| denotes

the area of K;, 7 = 1,2. By vg = F13(v1), we have v(Q') = v2(Q’) = v1(Q)
for all ¢’ € K2 Thus

/ / lor) —v(@)F P s, dsp_/ / lvl )' dSqdS.
KiJ K, |P* l K1/ K, -
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Furthermore, define for each (P,Q) € K; x K

P —q| _ P = F12(Q)|
[P — Q| P —ql

f(rP,Q) =

Obviously, f(P,@) > 0 is continuous on K; x K; except when P = Q.
If P — @ € K;NKj, we have ¢’ = @ and f(P,Q) = 1; while if P —
Q ¢ K1 N Ks, f(P,Q) — 4o00. Therefore, by Lemma 4.4 there exists a
positive constant ¢ depending only on the shape of the elements K7 and
K>, such that

>c

g 129
VPQ |P— Q|
which implies

P~ Q| > clp—q, VP, Q € K;.

Hence,

/ / '”1 |dSQdSp<c// (2 )| dS,dS;
KiJK, - K |P_

A

We may bound the last term on the right hand side of (21) similarly.
Hence the lemma follows. O

LEMMA 4.6. Let Ky and K» be two elements sharing a common side
1
~. For any v € H2 (K, UK3) vanishing on v, there is a positive constant
¢ depending only on the shape of Ky and K», but not on v, such that

<
(22) ””“H%(KIUKQ) = C(HvluHé(Kl) * HvZ“H?(Kz))’

where v; = v|k,, i = 1,2.

Proof. By (21), we need only to estimate

2
/ / [v(P ldS o dSh.
Ki1J Ko |P_
It is obvious that

//~—3—)'—dSQ/dsp
K,JK, 'P_

23 (A o o (o)
>~ —g Q' p+2 dSQ’dSP
K1 Ky [P — Q| i, [P
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We estimate the first term on the right hand side. Let

1
G(p =/ ——dS,.
( ) KQ!P_Q/|3 Q

// G dSQ/dSp—/ G(P)v1(P)[2dS,.
K K2

Set up a local polar coordmate system (p,#) with the origin at P, we
have (see the left diagram in Figure 2)

01 d(p,y)+H 1
(24) / / — dpdf

where d(p,y) is the distance from P to the side 7, H is the diameter
of Ky, and 6 is the angle of the sector containing Kj. Since in the p-
version H is bounded from both above and below, and obviously 6; <
we have for all P € K; that

(25) G(p) <

Then

d(p,v)’
which leads to

v (P))? / jvi (P)]? 2
dSodSr < ¢ dSp < c|lv 1 .
/Kl/Kglp JP S <l ey e el

The second term in (23) is treated similarly. O

Figure 2. Diagrams for estimating G(P)
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LEMMA 4.7. Let K; and K5 be two elements sharing a common vertex

A. Foranyve H 3 (K1UKj3) vanishing at A, there is a positive constant
¢ depending only on the shape of K1 and K3, but not on v, such that

@) ol el g ),

Hz(KuK)" (“UIH H (K, 3 (K2)

where v; = v|k, on K;, i =1, 2.

Proof. We may proceed in the same way as in the previous lemma.
Here instead of (24) and (25), we have

01 P K2 c
L dpdo<
/ /d(P >) P d(p,K3)

where d(pP, K3) is the distance from P to Ka, refer to the right diagram
of Figure2. Note that in this case d(P, A) < cd(P, K5), hence

c
G(p) < A
The conclusion (26) follows readily from the above inequality and the
definition of Hj-norm. O
LeMMA 4.8. Let K1, Ky,..., K, be an arbitrary set of n elements,
and let w = U K;. Then for any v € V,(T'), there exists a positive

constant ¢ depending on the shape of K;, 1 < ¢ < n, but not on v, such
that

2 2 2
1) o155 S €01+ 00 3 0l
1=

In addition, if v vanishes on Ow, then
2
28) ol < (1 +1np) Z 19123
Proof. By the definition of H §-norm

—v@Q
Il g ) = Vol + 3 [ [ DD s,

{m=1

Now we estimate each of the integrals on the right hand side of the above
formula.
Case (i): Ky = K,,. In this case the integral can be bounded from

above by ||v||2
CT
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Case (ii): Ky N K., = 0. Then we can bound the integral as follows

./‘J/ o(r) Zv@F 4 4,
K, m

dS,dS +2/ / dS,dS
/](ﬂ/;{m IP Q13 N " K7n ’P Q,3 ° "’

<ol PP dse+e / [(Q)[? dS,,
K, Km

where

2 2
= ———= dS and c2= S —
qummme 2&mwmmp

Both of the above two constants can be bounded from above by con-
stants, since in the p-version the triangulation is assumed fixed. There-
fore the integral can be bounded from above by c|jv||3, (KoUK

Case (ili): K, and K,,, share a common edge or a vertex. Obviously,

2
// @Ww&qw
Ko JKm |p_ H7(KUK )

To bound the norm on the right hand side, define v; = v| &, and vy =
v|g,,. Furthermore, let @y = Fpp(vi) and 0y = F,,e(v2), where Fpnp
and }"gm are the affine-mirror transforms described before. Then we
introduce

{ %(U1+172), on Ky; {
Vey = and voq =

(v — D2), on Ky
T(va+ 1), on Ky; (

DoI—= D=

vy — 1), on K,,.

Clearly v = vey + Uoq on K e U K,,. We estimate separately the norms
of ve, and v,g. Note that (v2 + vl) is the affine-mirror transform of
2(v1 + B2). It follows from Lemma 4.5 that

< cfjvg + 2|
< el
<

c(lluall

“’Ue'UHH% (KZUKm)

HZ (K,)
H’Z K

H3 (Ky)



Preconditioning for p-version BEM in 3D with triangular elements 363

If K, and K, share a common side -, we have by the fact that v,q =0
on <y, Lemma 4.6, Lemma 4.1, and Lemma 4.5

<
< <||vodn b IlvodllH%(KmQ
(20 < et +p)lvoall, g e, + Vol )
< c(1+Inp)(Jjvr — 'UQ”H%(K ) + |lve — 111||H7(K ))
< e+ mp)(fuall ||U2|IH7 ko))"

If K, and K,,, share a common vertex A, we have similarly by v,4(4) = 0,
Lemma 4.7, Lemma 4.2, and Lemma 4.5 that

Iooalyd sepurey < Clvoall g ol g )

(30) < ot tap) (ool 3 e+ 0ol g3 )
< e+ (ol g o F o2l g )

Hence

BD ol g, < CQFRPIN g g+ Tollyg )

The conclusion (27) follows from the bounds in the above three cases.
In addition, if v = 0 on dw, then it follows from (1) that

I
_1
o2y, = 012y, + D0 P,
i=1

where T is the total number of element sides of dw, and d; is the distance
to the i-th side s; of w. Let K, be the element in w which contains s;.
It follows from Lemma 4.1 that

I 1 ! Y
D s ol < ellolagy + 300 ol )
i=1 4

c(1+Inp) Z ||v]|H7(K )

which leads to the second conclusion of this lemma. |

Finally, we present two lemma relating the H %(F)—norm of a func-
tion in V(') to its L2(W)-norm. The following polynomial extension
theorem from [16] plays an essential role.
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LEMMA 4.9. Let f € P,(0K). There exists an extension E(f) €
Pp(K) such that E(f) = f on OK, and

IE g S € zziomy
where ¢ is independent of f and p.

LEemMMA 4.10. Let s be an arbitrary side in the partition. For any
v E Span{wg-s], 1 < j < p—1}, there is a constant ¢ independent of v
and p such that

2 25 12
(32) oy gy < o+ ) vl q)-

Proof. By Theorem 1 and Theorem 2 in [8],

- 2
(33) Blo,v) = ol

Let K, and K5 be the elements sharing side s. For any z € VIKyylxal
it follows from (5) and (18) that

B(v,) = Blo,0+2) < eloll gy 1 o+ 2l 1y 1

< clvl gy v+ 2153 4 umy
Hence it follows from Lemma 4.8 that
ol g3 ) < ellv+2l 53 1k

< (L) (o + 2l gy o+l 2l )

Choosing z = £(v|pk,) — v on each element Kj;, i = 1,2, where £ is the
extension operator defined in Lemma 4.9, we have easily from Lemma

4.9
ol 3y < €1+ D)ol

O

LEMMA 4.11. Let n; be an arbitrary vertex in the partition, and let
Sn, be the set of all the element sides connected to n;. Then there is a
constant ¢ independent of p such that

[n;]11(2 2 [n;]1]2
(34) 0%y S e +mmp)® 3 s,

'Yesni

Proof. It can be proved in the same way as the previous lemma. [
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5. Proof of the main theorem

By the definition of C(-,-) (see (8)) and the fact that B(v,v) ~
”U”i}%(r) for any v € H%(P) (see theorems 1 and 2 in [8]), the con-
clusion of Theorem 1 is equivalent to the following statement: for any

U= Uy + 3.ty with uy, € VO and u, € V¥
VK

cl(l—l-lnp)_z”u“z%@ < Jluwl3e W)+ZII Kll-l(m

35 )
(%) < el +plul?,

We now verify both of the above inequalities.
Lower bound: By the triangle inequality and the fact that the
number of elements in a p-version approximation is fixed,

< 2 2
ol < lluml?yy  + 15wl )

(36) < C(“uw”?{% n + Z HUK”?{% r) )-

We use a standard coloring argument to bound the term HuWHI_{ by’

see, e.g., [1]. Let uy = uy + ug with uy and ug being the combinations
of nodal and side components, respectively. Then

v 23 oy = s + sy < el o+ el )

Note that the set E of all sides of the partition can be decomposed into
disjoint subsets as follows

E=FUFEU---UE,,

where for each pair of sides 7,7 € E,,, the elements adjacent to v do
not overlap with the elements adjacent to 4/. By the triangle inequality

Ju Fumm—uz . _LZn we g oy

Note that the supports of u, and . are disjoint for v, € E;. There-
fore, we have from Lemma 4.10 that

2
sl gy =1 3 il g S 3l o

VYEE, VyEE,

< (1 +Inp)? Z ||U7||L2(7)a
VYEE,
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which implies further that

L
2 2 2
HUEHH%(F) <c(1+p)> > Y luyliiagy
{=1V~€EEy

C(l + lnp)2 Z HU’YH%Q(')')

VYEE
Treating uy in a similar way, we can prove by using Lemma 4.11 that

I
2 2 2
HU’N“H%(F) < ¢(1+Inp) Z [ | 22 o>
i=1
where u,, is the component in uy associated with the node n;. Com-
bining the above two estimates and using the fact that uy is L?(W)-
orthogonal to ugz, we have

I
2 2
ol S F RS g, 5 ltag,)
< o1+ Ip)fuls,

Hence, the left hand side of (35) follows from the above inequality and
(36).

Upper bound: First, note that u,, = v on W. It follows from
Lemma 4.3 that

2 2
luwllzzpn < Z lull 7o) < e +1np)\§{ lull 5

(38) ) o
<c(l+1 .
<l mpul?,

On the other hand, for any u, € V%1 (18) implies
lurcl?y < Ml

A%(r) az(K)
since ux = 0 on I'\ K. It follows from Lemma 4.1 and (19) that

2 <
Sl ) S Sl

oy H7(K)

< 1 2
o1+ 1np)? 5 el

<c(l1+1
¢(1 +1np)? ”ZUK“HQ(F)
=¢(1 4 Inp)?||u ZUWHH?(F)

< ¢(1+ Inp)? (IIUIIH% + v W”H’Z(F))

Furthermore, it follows from (37) and (38) that

el 4 ) < e+ ulFag, < e+ I0p) el
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which implies

2 < 5 2 )
5 ol gy < 1m0l

The above estimate and (38) lead to the upper bound of (35).
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