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On the Vibration Analysis of the Floating Elastic Body Using the Boundary
Integral Method in combination with Finite Element Method

by

K.T. Chung*

Abstract

In this research the coupling problem between the elastic structure and the fluid, specially the
hydroelastic harmonic vibration problem, is studied. In order to couple the domains, i.e., the
structural domain and the fluid domain, the boundary integral method (direct boundary integral
formulation) is used in the fluid domain in combination with the finite element method for the
structure. The boundary integral method has been widely developed to apply it to the hydroelastic
vibration problem. The hybrid boundary integral method using eigenfunctions on the radiation
boundaries and the boundary integral method using the series form image-functions to replace the
even bottom and free surface boundaries in case of high frequencies have been developed and
tested. According to the boundary conditions and the frequency ranges the different boundary
integral methods with the different idealizations of the fluid boundaries have been studied.

Using the same interpolation functions for the pressure distribution and the displacement the
two domains have been coupled and using Hamilton principle the solution of the hydroelastic
system have been obtained through the direct minimizing process.

It has become evident that the finite-boundary element method combining with the eigenfunction

method or the image-function method give good results in comparison with the experimental

ones and the other numerical results by the finite element method.

1. Introduction

All the systems in ship and offshore engineering
the

coupling between structure and fluid. In many cases

contain certain amount of interactions, i.e.,
of various practical purposes it can be assumed that
one system does not influence the other simultan-
cously. Typical examples of these behaviors are the
hydrodynamic forces on the massive offshore platform
or the motion of pressure vessel.

On the other hand the systems composed of structure

and fluid, for instance, structures such as thin steel
offshore structure or large steel pressure vessel with
relative large openings may have to be considered
simultaneously. Systems such as these are said to be
the

influences the other and vice versa{20, 21].

coupled at any time, Iie, behavior of one

The vibration problem of the floating elastic body
is the coupling one between the elastic structure and
the fluid. In general the ship sturctural vibration has
been analysed by use of the strip theory and the beam
theory, in which the hydroelastic coupling effect is

neglected by using the hydrodynamic added mass of
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the two-dimensional rigid section using conformal
mapping technique or the sink-source distribution
method. It is only one possible way in this two
dimensional method to consider the three dimensional
correction factor (J-factor) for the three dimensional
flow around the vibrating body. Because of the
theoretical limitation this method cannot cover the
three dimensional problem, i.e., the hydroelastic
coupled vibration one and more over that with the
special fluid boundaries(4, 9, 15, 16, 18).

The first numerical analysis of the hydroelastic
coupling problem is the work of Zienkiewicz by using
the finite element method [20], in which the two
formulations, Lagrangian or Eulerian formulation, have
been proposed. Although this method could give a
new way to handle the hydroelastic coupling problem,
there remain many problems, for example, setting the
radiation boundary to cut the infinite fluid domains
and needing too many degrees of freedom in order
to idealize the fluid domains with the finite elements.

The boundary integral methods based on the direct
(BIM) have been

developed recently by the research group in UK (5]

weighted residual formulations

and they became very popular in the engineering
because of the economic calculating possibilities and the
exactness of the solution for the domain problems(1].

The sink-source distribution method (SDM) is one
of the boundary integral method, where the Green
function, which satisfies the boundary conditions on
the free surface, bottom and radiation boundaries, is
used. Therefore it is a boundary value problem of
Neumann type with only one kinematic body boundary
condition. It is also called indirect boundary integral
method, because the first unknown variables are the
sink-source densities, which have no physical meaning.
Therefore it is impossible to deal with the boundary
value problem of mixed type, for example, arbitrary
solid boundaries and it contains also a lot of numerical
difficulties to calculate the fluid behavior in high
frequencies(7, 8, 10, 14..

The direct boundary integral method (BIM) has
been developed as a general tool to solve the boundary
value problem of mixed type. Yeung and Mei have

_applied this method to the hydrodynamic motion
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analysis of the floating structure [14] and Yeung has
developed the hybrid method using the eigenfunctions
But

hydroelastic vibrating structure, i.e., if the vibration

on the radiation boundaries [19). in case of
of the structure makes the relatively small radiating
waves, it is a natural question, how many degrees
of freedom we need to idealize the boundaries of the
problem.

The first work to apply the indirect sink-source
distribution method to the
problem is that of P. Kallef [11].

the simple Green function 1/r for the boundary value

hydroelastic vibration

He has applied

problem of Neumann type, i.e., he has neglected all
other boundary conditions except the kinematic one
on the wetted body boundary.

In this paper the general BIM and the hybrid BIM
(HBIM) have been tested in the high frequency
ranges. As Neumann has soon explained, the mirror
effect can be successfully applied in the ideal cases
of w—0 and w—oco. This image-function method can
be used to analyse the vibration problem in combina-
tion with the general BIM or the HBIM.

The hydroelastic vibration is also a function of
eigen mode shapes of the structure as well as the
frequencies and the other boundary conditions. In
order to couple the two domains the continuity and the
compatibility between the two domains are required.
Therefore the same elements and the same shape
functions are used for the fluid and the structure.
The hydrodynamic velocity potential functions in
Auid is defined using the same unknown displacement
vectors, which are used in the structural finite
elements.

All the energies have been integrated into a Hamil-
ton functional with the unknown displacement vectors
and using the Hamilton principle the solution can be

found at the stationary state of this functional.

2. A brief review of the theory on the
boundary value problem

2.1. The boundary value preblem
It is assumed that the fluid is ideal, the oscillation

amplitudes are small with respect to the dimensions
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Fig. 1 Coordinate System

of the body, only, the first order effects are considered
and the waves are harmonic and linear. (Airy type)
The six possible degrees of freedom are defined as
three translations and three rotations at each point on
the wetted structural surface. They are indicated by:
displacements: U (z, ) =Rel[U(z)exp(iwt))

: Vix, )=Re[—ioU(x)exp(—iwt)]
alx, ) =Rel—w?U(x) exp(—iwt))
2.1

and w is the

velocities
accelerations :
where x is the coordinate vector
frequency.
The solution of the flow problem can be described
by using the velocity potential in the fluid domain:

¢ (z, t) =Relp(x)exp(—iwt)] 2.2)
Fe,)=But §oA o= Gut Bt T

where
é»=elementary wave potential (Airy type)
& s=scattered potential
and
é.;=radiation potential (j=1, -, 6)
And the following Laplace equation must be fulfilled:
72¢=0 in the fluid domain Rf 2.3

The boundaries are composed of wetted vibrating
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Fig. 2 Definition of domains and boundaries
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body surface(S:), free surface(S,), rigid surface(Ss)
and control surface at infinity.

In order to have a finite length of the total boundary
the control surface at infinity should be replaced by
radiation surface(S.) at finite distance from the body.

Ry=Rysi+Ry.,
S=5p+Ss4Ss+Sa

After linearization the boundary conditions can be

in the fluid domain

on the boundaries

described as follows:
Three homogeneous boundary conditions:
1) bottom condition:

0¢/0n=0 on Sy 2.4.1)
2) free surface condition:
3¢/0z—w ¢/g=0 on S, (2.4.2)

3) radiation condition (approximated Sommerfeld
type) :
d¢/on—ikp=0 (2.4.3)

where % is the wave number, which is the

on S,

solution of the following dispersion relation:
ktanh(RH)=w?/g (H=water depth,
g=gravitational acceleration)
One non-homogeneous boundary condition:
4) kinematic condition on the wetted body surface:
04 (z) fon=V(x)-n(x) (2.4. 49

where

on Sk

V(x) =velocity vector at a point x
a(z) =unit normal vector at a point x into
the fluid domain

Through this non-homogeneous kinematic boundary
condition the two systems can be coupled and the
mode dependency of the hydroelastic system can be
obtained.

This is the well known boundary value.problem of
mixed type to fulfill the Laplace equation and the
four boundary conditions.

2.2. Direct boundary integral formulation
(BIM)

The direct boundary integral formulation is based

In(1/1)/27 or

1/r/4z for two or three dimensional potential problems.

on the simple Green function ¢*;

With the weighted residual integral statements this
boundary value problem of mixed type can be
integrated into one integral equation. The numerical

errors in the domain and on the boundaries, which
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come from the approximation with the assumed
function ¢, have been weighted with the simple
Green function ¢*, which is a fundamental solution

of the Laplace equation. These have been integrated

into one integral equation.
[, rg9rar= . (08/on—Vn)gds
+[ @p/on—ikg)grds+ [  @9/0m) g*ds
+ [ @g/on—ur/g)g%ds

After performing the partial integration twice the

2.5)

following inverse integral equation is obtained.
C@@+[ 9 @g*/onds
+ [ @4*/on—ikg*)p () ds
+ [, @8 /m—urg*/e)p (&) ds
= L $*Vnds

where constant C(x) is proportional to the solid angle

(2.6)

at the singular boundary point “z” and £ is the
integral independent variable on the boundaries.
Comparing with the traditional sink-source distribu-
tion method the boundary conditions of mixed type,
for example, arbitrary bottom boundary, canal wall
etc., can be integrated into one integral statement. In
addition the singular integrations in the domain and
(2.6),
accomplished using direct numerical integrations and
is not a constant 1/2 like in SDM.
Moreover the important difference from SDM is the

on the boundaries, C(z) in Eqn. can be

therefore it

integration of the velocity vectors on the body boun-
daries after weighting it with ¢*.
This direct formulation of BIM can be also obtained

using Green’s theorem, which has the following form:

[, wrto—vrydR= [ (usvjon—voujon)ds
Ry s

2.7
If # and v are two harmonic functions in the fluid
domain and we take u=¢ and v=¢* this equation

becomes:

—Cigi+ f  (§2¢*/an—§*$2/m) ds=0 2.8)

where
5,=8-38,
S.=boundary segment at a point “x” with the

i@,

radius “e
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Cigi=the constant and the potential at the i-th

“

singular point “2”,

Inserting the boundary conditions in Eqn. (2.4)
into Eqn. (2. 8) the same integral formulation as Eqn.
(2.6) will be obtained.

2.4. Hybrid boundary integral method (HBIM)

The potentials on the radiation boundary can be
approximated as a superposition of undisturbed poten-
tials ¢.(k, &) in the outer region Ry, using Fourier

integral statement:
$@)= [ A®)p.k, ) dk

where A(%) is the unknown modulation coefficients

2.9

and ¢.(k, z) is the eigenfunctions on the radiation
boundaries. The variables 2 and x are the wave
number and the coordinate vector.

Wehausen and Laitone showed that ¢,(k z) is a
set of eigenfunctions, which satisfy the Laplace
equation and the boundary conditions on the free
surface as well as on the even bottom and represents
the outgoing waves at infinity (y=4o0) [17].

The eigenvalues k, and ik; are the roots of the
transcendental equation:

ko tanh (k. H)=w?/g and
kitan(B:H) = —o?/g (i=1,2,3, ) (2.10)

Nothing that the eigenvalues are the discrete ones
from Eqn. (2.10) and nothing the damping factors in
the eigenfunctions, the integral in Eqn. (2.9) can
be converted to a discrete summation with finite
terms /24/. Substituting the boundary conditions on
Si, 8. and Sp into Green’s integral equation (2.8)

we obtain the following equation:
C@d@)+ [, #(& @g*/om)ds
+ [, @8*/on—wrg*/e) (D) ds
+ [, @dg* fon—g¥ogu/om)ds
= f s.qﬁ*Vna’s

If we substitute the eigenfunctions into Eqn. (2. 11),

(2.11)

i.e., if we match the potential and the normal velocity

of the inner regions with those of the outer regions

on S,, we obtain the integral formulation with the

unknown coefficients on the radiation boundaries.
2.5. The image-function method

By choosing a fundamental solution ¢* which

Journal of SNAK, Vol. 24, No. 4, December 1987
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satisfies a certain boundary condition, we have not
to discretize this surface.

For instance the horizontal bottom can be disre-
garded using the following image function, which
fulfills the boundary condition on that.

09*(&;x) /on=0
(&) =¢*(6;2) +4* (% 2)

where é=the source point on the boundary, §*=the

(2.12)

reflected singular point on the bottom and z=the
observing point on the bhoundary.
For the two extreme cases (w—0 and w-—o0) the
free surface condition (2.4.2) becomes:
9¢*/on=0
F*=0

For the motions at infinite frequency and at the

on S, for w—0 (2.13)

on S, for w—oo

zero frequency the Green function ¢*, which satisfies
the boundary conditions, can be generated by a series
function, which represents the summation of the

images with respect to the bottom and the free surface.
¥ (5 2) =¢*(§;2) +of (64 x)

for w—0

ORCERNTER R
(& 2)=¢*(§;2) —¢f (85 2)

FE (D"t ) for e (210
where
Fin= i (651 2)
These Green function ¢, yield good convergence

with increasing N and these are therefore very

efficient for the numerical evaluation of the hydroelastic
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vibration problem (See Fig. 4.6).
2.6. Conversion to algebraic equations
In order to couple the two domains we approximate
the unknown variables with the same shape functions,
as in FEM, through which the compatibility and the
continuity between the two domains can be fulfilled.
As in FEM we use the isoparametric shape functions
[3], i.e., the same shape functions for the potential
and the differential of that.
$(x)=Ni(x)¢: and
3¢ (x) /on=N.(x) (8¢/3n)' (i=1, -~
where

, NOP) (2.12)

NOP,.=the number of nodes in one element
z=the generalized coordinate
N:(x) =the isoparametric shape function.

In this paper the isoparametric one-dimensional

element of one-to-three variable nodes and the
isoparametric two-dimensional element of three-to-eight
variable nodes are used [3]. In the general boundary
integral method (BIM) there are the following two
typical integrals, which can be converted into algeb-

raic equations:

[ s @as@adsta)
’-_—Ng'f P& IN:(2)ds(2)9i=G i
=14 S§°
[ @8 @ /amp@rds(@

NEL
=3 [ .08 &2) (am NiCa)ds () go=Hys

(2.16)
In the hybrid boundary integral method (HBIM)
the unknown potentials on S, would be described by

the eigenfunction expansion:

¢(x) =‘_=Z’:)}d;¢i(x) and 0¢(x)/on

=4 (0.(2) /0m)’ @1n

where N=the number of eigenfunctions on the

radiation boundary,
¢:(x) =the i-th eigenfunction and
d;=the coefficient according to $:(z)

Using this definition the integrations on the radiation

boundaries can be redefined as follows:
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fs,¢* (&;2) (8¢, (x) /on)ds(z)

=% [ diog./ony s &) ds ()

&) /0n)'¢*(&;x)ds(x
:diQi(e;Sa)

[ @s* G /am g2 ds()

(2.18)

=5 [ digi) 04 (&) /om)ds(2)=diPi(8: 5

With this definition the boundary integral formula-
tion can be written as the algebraic equation:
(H—-?G%g—ikG*)¢=G*F* in BIM

P
(H} H?| H*—w*G®/g | P1r~Qs) gg
d;
=G F* in HBIM 2.19)
or
AX=B (2.20)

where A is the system matrix, X is the unknown
vector, which involves unknown potentials or unknown
coeficients, B is the right side vector and the indices
%, b,0,a indicate the corresponding boundaries, S,
85,8, and S..

If we use the image-function method, the corres-
ponding boundary integrals can be eliminated.

2.7. The solution of the algebraic equation
The above alegbraic equation (2. 20) can be devided

into two parts, real and imaginary parts:

& AG)=CoIiVl ew
where

A=R,(4), Ai=I,(4), and

V:=R.(V), Vi=L,(V).
Using this equation we can obtain:

4= ALV ALV

$=AFVI+ALV] (2.22)
where

AL=Ar*-'G'ny, AY=Ar*-1A,Ar1Gtn,

Ar*=A,+A:AT A (2.23)

In order to solve the hydroelastic vibration problem
we can think of a harmonic vibrating body (radiation

problem). Without restriction of the general theory

we can define the real velocity vector, ie., V;=0
for +=0. With this assumption we can write:
¢, =A,V, and ¢;=A,V, 2. 24)

K.T. Cilung

With this potential distributions we can obtain the

pressure distribution using Bernoulli equation.
P@)=rAna+iwAsV,

where

(2. 25)

c=the fluid density.

a-=the real part of the acceleration vector
3. The analysis of the hydroelastic system

To analyse the interaction between two systems,
fluid and structure, two system variables, potential
and displacement, are used to define each system
(Eulerian definition). The coupling of the two systems
can be accomplished by satisfying the continuity and
the compatibility conditions between two ones. The
fluid motion and the structural motion on the wetted
body boundary can be defined as dependent on each
other through the kinematic body boundary condition.
Therefore the pressure can be described with the
With

parameters the corresponding energies can be easily

unknown displacement. these two system
formulated and integrated into a Hamilton functional.
Througth the Hamilton principle the stationary state
of the total energy can be easily obtained by direct
minimizing process.

The Hamilton's functional is defined:

A= f:’(T,,—T,,)dt G.D

where Ty= Ts+ Tr+ W=the kinetic energy of the
structure(T) +that of the fluid(7T,)4-the work due
to external forces(W) and T,=the potential energy
of the structure.

We can find the solution of the coupling problem

in the following condition:

5A=0 (3.2)
3.1. The formulation of the energy
functionals
3.1.1. The kinetic energy of the structure
To=1/2 [ (V%R
=1/2 [, 0?0 UiUdR exp (—i2or) (3.3)

where

cr=the density of the structural component

Journal of SNAK, Vol. 24, No. 4, December 1987
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R,=the volume of the structure,
V,=the velocity vector of the structural component
Using the same interpolation function as in the fluid

domain we obtain:
NEL
T.=1/20* 3, Us [ 6NN, dR U; exp(—izat)

=1/20*3U:M,U; exp(—i2wt) Gy

or
T,=1/2UTMU exp(-—i2wt)
where
NEL=the number of the structural elements,

R,,=the m-th element volume,
M,= fR ¢+N:N;dR=the mass matrix of the m-th

(3.5)
M=3M,—=the mass matrix of the structure,

structural element

U=23U,=the displacement vector of the structure
3.1.2. The potential energy of the structure

The potential energy of the structure is conserved
as the strain energy. It can be quoted from the for-

mulation of the general finite element method:

Tyzl/ZfR oTedR=1/2 fR efcedR (3.6)

where ¢=the stress tensor, s=the strain tensor and
C=the elasticity tensor.
In the linear elastic system the strain tensor can
be defined as follow:
en=BU 3.7
where B,—the strain-displacement operator tensor.
Using this notation we can write:
Tp=1/2(2U: [ | BICBudRU,)exp(~i2at)
=1/2(3U;K,U;Yexp(—i2wt)
m

=1/2UTKU exp(—i2wt) 3.8)

where
Km:f . _BLCB,dR=element stiffness matrix

K:%’Km:‘system stiffness matrix,
3.1.3. The kinetic energy of the fluid
17,=1/2 [ _UC-Pynds
=1/2fS‘U(WP)nd5 exp(—i2wt) 3.9

where P=the hydrodynamic pressure as a functions

of the displacement vector, z=the unit normal vector
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on the wetted structural surface into the fluid.

In the isoparametric interpolation we use the same
shape function to approximate the pressure distribution
as for the structural displacement:

P=N;Pi=N;(psrAna+owpsrAsV) (3.10)
where A, and A4 are the given matrices in equation
(2.23).

Using this definition we obtain:
T,=~1/25U, f NN ;nds
(prAnma;+wprAaV;)exp(—i2wt)
=—-1/25Ui(~o? f o Ps NN pds A

—iws.psrNiNjndsAs) Ujexp(—i2wt)
=1/25Ui(0*M?+ieD?) U;exp(—i2wt)

=1/2(tUTMyU+iaUTDyU)exp(—i2ut)
3.1
where the hydrodynamic added mass matrix M, and
the hydrodynamic damping matrix Ds are defined as
follows:
My=SpsNiNndsAn

D/.:—‘fpriNjﬂdSAd (3. 11. 1)

3.1.4. The work due to the external forces

The work due to the external forces can be written
as follows;

W= f T Fds=5U; f (Nifids exp(—i2et)

=UTf exp(—ilwt) 3.12)
where
J=the surface force vector on the structure.

Sn=the surface element of the structure.
3.2. The Solution of the hydroelastic problem

Combining all the energies into Hamilton functional
we obtain:
A=1/2 [ (@ UTMU+02UT MiU~+ioUTDsU
+UTF—UTKU)exp(—i2wt)dt (3.13)
Because we are concerning about the harmonic
problem, we can take one period as an integral
interval. We can determine the stationary state of the
functional by differentiating it with respect to the
independent variable U.
dA=—8UT (P MU+ *MyU-+ioDiyU

+F—-KU)=0 (3.14)
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If follows the well known characteristic equation of
the hydroelastic vibrating system.

(K—iwDi—o*(M+My))U=F (3.15)
Concerning only about the eigenvalue problem we can
take the following equation.

|K—a? (M+My) | =0 (3.16)

3. 3. Some aspects in treating the hydroelastic
coupling problem

1) The general classification of the frequency ranges

In treating the boundary value problem in Chap. 2
the two remarkable points must be pointed.

a) The frequency dependency of the hydrodynamic
added mass comes from the boundary condition on
the free surface. We can write this boundary condition
as follows;

8/e?(0¢/0n) —$=0.

In BIM the integral of o¢/on on S, is not dependent
on the element size but only on the solid angle at
that singular point. Therefore it is evident that the
frequency dependency of this boundary condition dies
proportional to the square of the frequency. The
higher the exciting frequency becomes, the more
stable the hydrodynamic added mass becomes. (See
Fig. 3.1

b) After we used the image functions on the free
surface and the bottom in region II and III, the
frequency dependency of the hydrodynamic damping
comes from the radiation boundary condition. If the
wave number % becomes large, the real and imaginary
parts of the system matrix become decoupled. There-
fore the damping goes zero.

From these two facts we can devide the frequency

Mhtwl]
D hiw) Mhlw)
W
Fig. 3.1 Symbolic diagram of Mk and Dk
11T

E
t 7.
d

Fig. 3.2 Idealization of the boundaries

K.T. Chung

range into three parts (See Fig. 3.1). Corresponding
to the frequency representing the hydrodynamic
characteristics we can idealize the boundaries differ-
ently (See Fig. 3.2).

functions on the free surface we don't have to ide

Using small number of image

alize this boundary in the frequency range II and IIL
2) The symmetrization of the hydrodynamic matrix
Although we have used the isoparametric interpola-

tion functions for the displacement and the pressure,
the hydrodynamic matrices are asymmetric, because
the matrix A, and As in the Eqn. (2.23) is
asymmetric. It comes from the fact, that two other
types of functions, Green function ¢* for the weighting
of the errors and the isoparametric approximation
function for the potential ¢, have been used.

In other words the potental function ¢ has been
weighted with a singular function ¢* which is very
strong concentrated at that singular point. Through
this weighting the local distribution of the potential
cannot be correctly described, and then the hydro-
dynamic matrices become asymmetric. But if we
discretize the boundary very finely, the concentration
divergies very rapidly. Therefore the asymmetry of
the hydrodynamic matrix is not so strong and it can
be symmetrized through the rational approximation.

In order to combine the BIM with the finite element
method and in order to use the FEM codes to couple
the two methods, in practical point of view, we must
symmetrize the hydrodynamic matrices, because the
solution procedure of the FEM can be applied only
for the symmetric matrix.

The matrix can be symmetrized either by using
the
energy conservation principle. The two methods give

direct error minimizing process or by using

the same results /5/.
In this paper the direct error minimizing process
has been used:

S=1/2((Mpi;—Mp:; )2+ (—M;)®) 3.17)
where S is the square sum of the errors between the
symmetric matrix Mz; and the asymmetric matrix
M;;;. The symmetric matrix can be obtained to
differentiate the square sum with respect to Ma;;.

Maij=1/2(Mp;j+ Ma;i) (3.18)

3) An iteration method to solve the eigenvalue

Journal of SNAK, Vol. 24, No. 4, December 1987
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the frequency of the hydrodynamic system is prescribed

problem of the hydroelastic system

And it will be repeatedly iterated

as a given value.

As far as we can not neglect the free surface

until the system eigenvalue becomes same as the

is

hydrodynamic matrix

the
implicitly dependent on the frequency. Therefore the

boundary condition,

prescribed one.

characteristic equation becomes:

4. Calculated results

(3.19)

0

| K—w*(M+Mi(@)) |

Where o is the eigen-frequency of the hydroelastic

4.1. The hydrodynamic added mass and

coupling system and & is the prescribed frequency to

damping in wide frequency ranges

define the hydrodynamic system.

a) The hydrodynamic added mass and damping of

This is a nonlinear numerical eigenvalue problem.

a half submerged long cylinder section (H=2a) have

In this paper an iteraction method is proposed, where

A

1.5 2.0 2.5 3.0 3.5

1.0

.5

Fig. 4.3 C,, and C; of a half circle by BIM up to the high frequency range

-
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Fig. 4.4 The selection of the eigen-wave numbers to get the proper damping coefficient in high

frequencies using HBIM
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been calculated with the program RIM (based on with those by Vugts (Fig. 4. 2).
BIM and HBIM). The results have been compared ¢) These have been also calculated in high fre-

with those of singular-distribution method by HBIM quencies with the program RIM (Fig. 4.3). The

in the motion frequency range (Fig. 4.1).

b) The results by BIM have been also compared range have been used.

same degrees of freedom as in the motion frequency
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Fig. 4.5 C, and Cs of a half circle using HBIM with five eigen-functions on S, using the image

functions on S, and S,
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Fig. 4.6 Convergence test to select the number of image functions
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d) The calculation of the hydrodynamic damping
in high frequency with four selected eigen wave-
numbers have been demonstrated(Fig. 4.4), and it
becomes clear that the eigen wave-numbers for HBIM
must be selected over the base wave-number %,. The
caleulated results in high frequencies with HBIM
have been shown in Fig. 4.5, where only five
eigenfunctions have been used to approximate the
potential function on the radiation boundaries.

e) In using the image-function method for the
bottom and the free surface in the infinite frequencies
the convergence has been tested with increasing
number of reflections (Fig. 4.6). It is clear that the
result converges very rapidly.

f) Two examples to calculate the hydrodynamic
added mass using the image-function method have
been shown in the Fig. 4.7 for a half circle and in
the Fig. 4.8 for a half sphere, which are floating on
the free surface.

In this paper the hydrodynamic added mass Mk

K.T. Chung

and the hydrodynamic damping DA are nondimen-
sionalized as follows:

Ca=Mhn/cd, Ca=Dh/pd(A/g)"*

where 4 is the volume of the body, p is the fluid
density, A is the characteristic half breadth(=10")
and C,, Cs are the hydrodynamic added mass, and
damping coefficients.

4.3. The free vibration of a rectangular
plate with one fixed edge under the
free surface

The eigenfrequencies of a rectangular steel plate
(20cm x 10cm % 0. 262¢m),

shorter edge under the free surface (See sketch 4.1),

which is fixed along the

have been caculated with the program system NISA/
RIM (based on the finite-boundary element method)
and compared with those of the experimental ones by
Lindholm /13/, who has given the results only by
deep water (Table 4.1). The results for the various
water depth, which is calculated with NISA/RIM,
have been tabulated in Table 4.2, It is evident that

Table 4.1 Comparison between the calculated results by NISA/RIM and the experimental ones

by Lindholm (d— )

LINDHOLM

NISA/RIM
\ - l7 - — S
Mode T~ i dry wetted 4 dry wetted ! 4
S~
1R L 1445 5. 633 0. 388 13.8 — —
M { — — — 12.9 5.1 0. 369
2R i 62.57 31.31 0. 500 59.3 — —
M — - — 58, 2 29.8 0.502
3R 96. 83 41. 06 0.434 85.9 — —
M — — — 80, 8 34,4 0. 400
4R 211.7 114. 09 0. 543 194. 0 — —
M — — — 189.0 99.1 0.5108
5R 310. 85 154, 82 0. 498 - — —
6R 407.0 235.71 0. 579 — — —
R =calculated, M=mesured o . S
Table 4.2 The calculated results by NISA/RIM for varions water depths
P 2 R R R
e t 5.633 331 | 42.06 114. 09 l 154.82 | 235.71
1.0 | 5. 645 31. 31 42.08 114. 09 ‘ 154. 84 ! 235. 71
0.5 E 5.702 31. 34 42. 27 114. 13 ‘ 1565. 03 i 235.73
0.25 | 5.948 31.76 43.55 115.12 | 15729 | 236.52
0.126 |  6.53% 34.15 L 4770 | 12270 | 169.80 |  247.82
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Sketch 4.1 The rectangular plate under S,

the reduction factor is strong dependent on the eigen
modeshapes, which have been shown in Fig. 4.9,
The reduction factor is defined as follows:
4=f(wetted) /£ (dry)
where f(wetted) and f(dry) are the eigenfrequency

in water and in the air.

1500
Sketch 4. 2 Reservoir

4.4. The free vibration of a rectangular
aluminium plate fixed at the center
of the plate on the free surface
The eigenfrequencies of a rectangular aluminjum

plate (60cm x 30cm x 0, 5em), which is fixed at the

Fig. 4.9 The eigen modeshapes of a rectangular plate with one edge fixed under water
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center with volting (See Scatch 4.2), have been
measured in a small reservoir (150cm X 80cm X 50cm),
and calculated with NISA/RIM (See Fig. 4.10). The
material properties (the specific weight 7, elasticity
module E, Poisson’s ratio v) are:

y=2700kg/cm? E=6. 75X 10N/cm?, v=0.3

Table 4.3 The calculated eigenfrequencies and the measured ones for various water depths

K.T. Chung

The calculated and measured eigenfrequencies up
to 6th mode has been tabulated in the Table 4. 3.
But only the second mode in water has been compared
with each other, because the experimental boundary
condition for the antisymmetric mode can not be

realised in the practice.

= —
H(water- ‘ 1 2 3 4 5 6
depth in cm) ™
7.5 I 13.93 17. 64(18.0) 38.63 45, 56 64. 67 126. 34
10.0 17.01 18. 64(18.5) 40. 60 47.04 72.27 130. 32
20.0 19.3 19.6 (19.6) 42.1 48.1 78. 95 132.8
30.0 | 20.07 20. 42(19. 8) 42. 65 48. 34 81.95 133. 43
40.0 20.19 20. 87(20. 0) 42,66 48. 31 82.91 134, 4

() : measured eigenfrequencies

..o,' AN
>

/4
7

Fig. 4.10 The eigen modeshapes of a rectangular plate fixed at the center under water
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5. Conclusion

The boundary integral method combined with finite
element method has been applied to analyse the
fluid-structure coupling problem. In this paper the
boundary integral method and the hybrid boundary
integral method, which have been developed in recent
years for the structural rigid motion, has been widely
to the
hydroelastic free vibration problem (program system
NISA/RIM).

In contrast with the rigid motion in the low fre-

developed and tested for the application

quencies the elastic deformation of the structure
should not be disregarded for the analysis of the
hydroelastic system. In this case the hydrodynamic
characteristics are also function of the structural mode
shapes as the frequencies. Therefore the two systems,
fluid and structure, must be handled simultaneously.

The calculated results show that the direct boundary
integral method give very stable results in the whole
frequency ranges, and it is not necessary to idealize
the boundary finer corresponding to the increasing
frequencies. The boundary condition on the free
surface and the even bottom can be eleminated by
using the series form image-functions (asymptotic
Green function).

The hybrid boundary integral method give a good
result with a few eigenfunctions on the radiation
boundary in case of high frequency, because the
spectrum in high frequency is concentrated near the
forced vibration frequency.

Specially the image-function method can be well
applied for the hydroelastic problem in high frequency,
because in this case we need to idealize only the
wetted body boundary with the fluid boundary elem-
ents.

The forced vibration analysis can be also accom-
plished through the hydroelastic coupling using the
program system NISA/RIM.
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