• 제목/요약/키워드: Boundary Nonlinear

검색결과 1,216건 처리시간 0.027초

Fixed Point Theorems for Mixed Monotone Vector Operators with Application to Systems of Nonlinear Boundary Value Problems

  • Sadrati, Abdellatif;Aouragh, My Driss
    • Kyungpook Mathematical Journal
    • /
    • 제61권3호
    • /
    • pp.613-629
    • /
    • 2021
  • In this paper, we present and prove new existence and uniqueness fixed point theorems for vector operators having a mixed monotone property in partially ordered product Banach spaces. Our results extend and improve existing works on τ-φ-concave operators in the scalar case. As an application, we study the existence and uniqueness of positive solutions for systems of nonlinear Neumann boundary value problems.

GLOBAL NONEXISTENCE FOR THE WAVE EQUATION WITH BOUNDARY VARIABLE EXPONENT NONLINEARITIES

  • Ha, Tae Gab;Park, Sun-Hye
    • 대한수학회지
    • /
    • 제59권1호
    • /
    • pp.205-216
    • /
    • 2022
  • This paper deals with a nonlinear wave equation with boundary damping and source terms of variable exponent nonlinearities. This work is devoted to prove a global nonexistence of solutions for a nonlinear wave equation with nonnegative initial energy as well as negative initial energy.

ON IMPULSIVE SYMMETRIC Ψ-CAPUTO FRACTIONAL VOLTERRA-FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS

  • Fawzi Muttar Ismaael
    • Nonlinear Functional Analysis and Applications
    • /
    • 제28권3호
    • /
    • pp.851-863
    • /
    • 2023
  • We study the appropriate conditions for the findings of uniqueness and existence for a group of boundary value problems for impulsive Ψ-Caputo fractional nonlinear Volterra-Fredholm integro-differential equations (V-FIDEs) with symmetric boundary non-instantaneous conditions in this paper. The findings are based on the fixed point theorem of Krasnoselskii and the Banach contraction principle. Finally, the application is provided to validate our primary findings.

ANALYSIS OF SOLUTIONS FOR THE BOUNDARY VALUE PROBLEMS OF NONLINEAR FRACTIONAL INTEGRODIFFERENTIAL EQUATIONS INVOLVING GRONWALL'S INEQUALITY IN BANACH SPACES

  • KARTHIKEYAN, K.;RAJA, D. SENTHIL;SUNDARARAJAN, P.
    • Journal of applied mathematics & informatics
    • /
    • 제40권1_2호
    • /
    • pp.305-316
    • /
    • 2022
  • We study the existence and uniqueness of solutions for a class of boundary value problems of nonlinear fractional order differential equations involving the Caputo fractional derivative by employing the Banach's contraction principle and the Schauder's fixed point theorem. In addition, an example is given to demonstrate the application of our main results.

QUALITATIVE ANALYSIS OF ABR-FRACTIONAL VOLTERRA-FREDHOLM SYSTEM

  • Shakir M. Atshan;Ahmed A. Hamoud
    • Nonlinear Functional Analysis and Applications
    • /
    • 제29권1호
    • /
    • pp.113-130
    • /
    • 2024
  • In this work, we explore the existence and uniqueness results for a class of boundary value issues for implicit Volterra-Fredholm nonlinear integro-differential equations (IDEs) with Atangana-Baleanu-Riemann fractional (ABR-fractional) that have non-instantaneous multi-point fractional boundary conditions. The findings are supported by Krasnoselskii's fixed point theorem, Gronwall-Bellman inequality, and the Banach contraction principle. Finally, a demonstrative example is provided to support our key findings.

EXISTENCE RESULTS FOR BOUNDARY VALUE PROBLEMS OF VOLTERRA-FREDHOLM SYSTEM INVOLVING CAPUTO DERIVATIVE

  • Shakir M. Atshan;Ahmed A. Hamoud
    • Nonlinear Functional Analysis and Applications
    • /
    • 제29권2호
    • /
    • pp.545-558
    • /
    • 2024
  • In this study, a class of nonlinear boundary fractional Caputo Volterra-Fredholm integro-differential equations (CV-FIDEs) is taken into account. Under specific assumptions about the available data, we firstly demonstrate the existence and uniqueness features of the solution. The Gronwall's inequality, a adequate singular Hölder's inequality, and the fixed point theorem using an a priori estimate procedure. Finally, a case study is provided to highlight the findings.

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SINGULAR SYSTEM OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS

  • Wang, Lin;Lu, Xinyi
    • Journal of applied mathematics & informatics
    • /
    • 제31권5_6호
    • /
    • pp.877-894
    • /
    • 2013
  • In this paper, we study the existence and uniqueness of solutions for a singular system of nonlinear fractional differential equations with integral boundary conditions. We obtain existence and uniqueness results of solutions by using the properties of the Green's function, a nonlinear alternative of Leray-Schauder type, Guo-Krasnoselskii's fixed point theorem in a cone. Some examples are included to show the applicability of our results.

NONLINEAR BIHARMONIC PROBLEM WITH VARIABLE COEFFICIENT EXPONENTIAL GROWTH TERM

  • Choi, Q-Heung;Jung, Tacksun
    • Korean Journal of Mathematics
    • /
    • 제18권3호
    • /
    • pp.277-288
    • /
    • 2010
  • We consider the nonlinear biharmonic equation with coefficient exponential growth term and Dirichlet boundary condition. We show that the nonlinear equation has at least one bounded solution under the suitable conditions. We obtain this result by the variational method, generalized mountain pass theorem and the critical point theory of the associated functional.

ON A NEUMANN PROBLEM AT RESONANCE FOR NONUNIFORMLY SEMILINEAR ELLIPTIC SYSTEMS IN AN UNBOUNDED DOMAIN WITH NONLINEAR BOUNDARY CONDITION

  • Hoang, Quoc Toan;Bui, Quoc Hung
    • 대한수학회보
    • /
    • 제51권6호
    • /
    • pp.1669-1687
    • /
    • 2014
  • We consider a nonuniformly nonlinear elliptic systems with resonance part and nonlinear Neumann boundary condition on an unbounded domain. Our arguments are based on the minimum principle and rely on a generalization of the Landesman-Lazer type condition.

A WEAK SOLUTION OF A NONLINEAR BEAM EQUATION

  • Choi, Q.H.;Choi, K.P.;Jung, T.;Han, C.H.
    • Korean Journal of Mathematics
    • /
    • 제4권1호
    • /
    • pp.51-64
    • /
    • 1996
  • In this paper we investigate the existence of weak solutions of a nonlinear beam equation under Dirichlet boundary condition on the interval $-\frac{\pi}{2}<x<\frac{\pi}{2}$ and periodic condition on the variable $t$, $u_{tt}+u_{xxxx}=p(x,t,u)$. We show that if $p$ satisfies condition $(p_1)-(p_3)$, then the nonlinear beam equation possesses at least one weak solution.

  • PDF