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Abstract. In this paper, we present and prove new existence and uniqueness fixed point

theorems for vector operators having a mixed monotone property in partially ordered

product Banach spaces. Our results extend and improve existing works on τ -ϕ-concave

operators in the scalar case. As an application, we study the existence and uniqueness of

positive solutions for systems of nonlinear Neumann boundary value problems.

1. Introduction

In [25], C. B. Zhai and X. M. Cao introduced the concept of τ -ϕ-concave opera-
tors A : P −→ P , where P is a cone in a Banach space, and proved the existence and
uniqueness of fixed points for such operators. They did so without requiring upper
and lower solutions, compactness or continuity conditions. Krasnoselskii [15] stud-
ied u0-concave operators with u0 � θ. In [27], Zhang and Zhai used the fixed point
theorem for increasing α-concave operators to obtain the existence and uniqueness
of positive solutions for Neumann boundary value problems. The same authors in
[26], proved new fixed point theorems for mixed monotone operators, and then they
established some criterions for the local existenceuniqueness of positive solutions to
some boundary value problems.

Indeed, there has been much attention focused on problems of positive solutions
for diverse nonlinear boundary value problems (See, for instance, [5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24]). However, most of these works
studied the scalar case. Therefore, motivated by some papers, for example [25, 26]
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and the references therein, we propose in the present work to extend a fixed point
theorem and its application to the vector case. In other words, we construct a fixed
point theorems for a vector operator, and then we apply it to systems of nonlinear
Neumman boundary value problems of the following type

(1.1)


−x′′(t) + θ2x(t) = λf(t, x(t), x(t), y(t)), 0 < t < 1,

−y′′(t) + ω2y(t) = βg(t, x(t), y(t), y(t)), 0 < t < 1,

x′(0) = x′(1) = 1, y′(0) = y′(1) = 0,

in order to obtain existence and uniqueness of the positive solution.
Let (E, ‖.‖) be a real Banach space which is partially ordered by a cone P ⊂ E,

i.e., x � y if and only if y−x ∈ P . If x � y and x 6= y, then we denote x ≺ y or y � x.
By θ we denote the zero element of E. Recall that a non-empty closed convex set
P ⊂ E is a cone if it satisfies (i)x ∈ P, λ ≥ 0⇒ λx ∈ P , (ii)x ∈ P,−x ∈ P ⇒ x = θ.

A cone P is said to be solid if its interior
◦
P is non-empty. P is called normal if there

exists a constant N > 0 such that, for all x, y ∈ E, θ � x � y implies ‖x‖ ≤ N‖y‖;
in this case N is called the normality constant of P .

For all x, y ∈ E, the notation x ∼ y means that there exist λ > 0 and µ > 0
such that λx � y � µx. Clearly ∼ is an equivalence relation. Given h � θ (i.e.,
h ∈ P and h 6= θ), we denote by Ph the set Ph = {x ∈ E : x ∼ h}. It is easy to see

that for h ∈ P , Ph ⊂ P is convex and λPh = Ph for all λ > 0. If
◦
P 6= ∅ and h ∈

◦
P ,

it is clear that Ph =
◦
P . Let us give the definition of mixed monotone operators

with three variables as it is known in the literature.

Definition 1.1.([3]) Let (X,�) be a partially ordered set and A : X×X×X −→ X.
Then the trivariate operator A is said to have the mixed monotone property if
A(., u, y) and A(x, u, .) are monotone non-decreasing, and A(x, ., y) is monotone
non-increasing, i.e., for any x, u, y ∈ X

x1, x2 ∈ X, x1 � x2 =⇒ A(x1, u, y) � A(x2, u, y),

u1, u2 ∈ X, u1 � u2 =⇒ A(x, u1, y) � A(x, u2, y),

y1, y2 ∈ X, y1 � y2 =⇒ A(x, u, y1) � A(x, u, y2).

The organization of this paper can be described as follows. In section 2, after
introducing the definition of cooperative and competitive mixed monotone vector
operators, we present two fixed point theorems corresponding to these two cases.
We prove the first result and leave the second to the reader, since the steps of the
proof will be analogous. In section 3, we give some applications of the results ob-
tained in section 2 on the existence and uniqueness of solutions of system (1.1). Our
results will be illustrated by concrete examples.
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2. Fixed Point Theorems

Inspired by the works [25] and [26], we present in this section our fixed point
theorems for a system of two operators with three variables, which can be written
as a vector operator. In other words, if (X,�) is a partially ordered set and, if
A1, A2 : X ×X ×X −→ X are two operators, then we define the vector operator
Φ = (A1, A2) : X ×X ×X ×X −→ X ×X, noted Φ = (A1, A2), by

(2.1) Φ(x, y, u, v) = (A1(x, u, y), A2(x, v, y)), ∀x, y, u, v ∈ X.

Then, we introduce the following definition.

Definition 2.1. Let (X,�) be a partially ordered set. Let A1, A2 : X×X×X −→
X be two operators and Φ = (A1, A2) be given as in (2.1).

(i) We say that the operator Φ = (A1, A2) is a cooperative mixed monotone
vector operator if A1, A2 are mixed monotone as in Definition 1.1.

(ii) We say that Φ = (A1, A2) is a competitive mixed monotone vector oper-
ator if A1(., u, y), A2(x, u, .) are monotone non-decreasing, and A1(x, ., y),
A1(x, u, .), A2(x, ., y), A2(., u, y) are monotone non-increasing.

2.1. Cooperative mixed monotone vector operator

Lemma 2.2. Let E be a real Banach space and P be a cone in E. Consider two
operators A1, A2 : P × P × P −→ P such that Φ = (A1, A2) satisfies the following
conditions:

(C1) Φ = (A1, A2) is cooperative mixed monotone, and there exist h, k ∈ P with
h 6= θ, k 6= θ such that

A1(h, h, k) ∈ Ph and A2(h, k, k) ∈ Pk;(2.2)

(C2) There exist positive-valued functions τ1, τ2 on interval (a, b), ϕ1, ϕ2 on (a, b)×
(a, b)× P × P × P and ψ1, ψ2 : (a, b)× (a, b)× (0, 1] such that

(i) τ1, τ2 : (a, b) −→ (0, 1) are surjections.

(ii) For any x, u ∈ Ph, for any y, v ∈ Pk, for any t, s ∈ (a, b) and any
ε ∈ (0, 1]
(2.3)

inf
x,u∈[εh, 1εh],y∈[εk,

1
εk]
ϕ1(t, s, x, u, y) = ψ1(t, s, ε) > min{τ1(t), τ2(s)},

inf
x∈[εh, 1εh],v,y∈[εk,

1
εk]
ϕ2(t, s, x, v, y) = ψ2(t, s, ε) > min{τ1(t), τ2(s)}

and

(2.4)

A1

(
τ1(t)x,

1

τ1(t)
u, τ2(s)y

)
� ϕ1(t, s, x, u, y)A1(x, u, y),

A2

(
τ1(t)x,

1

τ2(s)
v, τ2(s)y

)
� ϕ2(t, s, x, v, y)A2(x, v, y).
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Then A1 : Ph × Ph × Pk −→ Ph, A2 : Ph × Pk × Pk −→ Pk. Moreover, there exist
x0, u0 ∈ Ph, y0, v0 ∈ Pk and r ∈ (0, 1) such that

(2.5)

{
ru0 � x0 � u0,
rv0 � y0 � v0

and

{
x0 � A1(x0, u0, y0) � A1(u0, x0, v0) � u0,
y0 � A2(x0, v0, y0) � A2(u0, y0, v0) � v0.

Proof. For any x, u ∈ Ph and y, v ∈ Pk there exists λ∗ ∈ (0, 1) such that

λ∗h � x, u �
1

λ∗
h and λ∗k � y, v �

1

λ∗
k.

It follows from (C2)(i) that there exist t∗, s∗ ∈ (a, b) such that τ1(t∗) = λ∗ and
τ2(s∗) = λ∗, which gives

τ1(t∗)h � x, u �
1

τ1(t∗)
h and τ2(s∗)k � y, v �

1

τ2(s∗)
k.

Then, by the mixed monotone properties of operators A1, A2 and condition (C2)(ii),
we have

A1(x, u, y) � A1

(
τ1(t∗)h,

1

τ1(t∗)
h, τ2(s∗)k

)
� ϕ1(t∗, s∗, h, h, k)A1(h, h, k)

and

A1(x, u, y) � A1

(
1

τ1(t∗)
h, τ1(t∗)h,

1

τ2(s∗)
k

)
� 1

ϕ1(t∗, s∗,
1

τ1(t∗)
h, τ1(t∗)h,

1
τ2(s∗)

k)
A1(h, h, k).

FromA1(h, h, k) ∈ Ph, we haveA1(x, u, y) ∈ Ph and hence, A1 : Ph×Ph×Pk −→ Ph.
Analogously we obtain A2 : Ph × Pk × Pk −→ Pk.

Now, since A1(h, h, k) ∈ Ph, A2(h, k, k) ∈ Pk, there exists λ0 ∈ (0, 1) such that

λ0h � A1(h, h, k) � 1

λ0
h and λ0k � A2(h, k, k) � 1

λ0
k.

It follows from (C2)(i) that there exist t0, s0 ∈ (a, b) such that τ1(t0) = λ0 and
τ2(s0) = λ0, which gives

(2.6) τ1(t0)h � A1(h, h, k) � 1

τ1(t0)
h and τ2(s0)k � A2(h, k, k)

1

τ2(s0)
k.

Set ε0 = min{τ1(t0), τ2(s0)}. Then we have ψi(t0, s0, ε
n
0 ) ≤ ψi(t0, s0, ε

n−1
0 ), for

all n = 1, 2, ... and i = 1, 2. By (C2)(ii), we can choose a positive integer m such
that

(2.7)

m∏
i=1

[
ψ1(t0, s0, ε

i
0)

ε0

]
≥ 1

ε0
and

m∏
i=1

[
ψ2(t0, s0, ε

i
0)

ε0

]
≥ 1

ε0
.
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Put x0 = εm0 h, u0 = 1
εm0
h, v0 = 1

εm0
k and y0 = εm0 k. It is clear that x0, u0 ∈ Ph with

x0 = ε2m0 u0 < u0 and y0, v0 ∈ Pk with y0 = ε2m0 v0 < v0. Furtheremore, for any
r ∈ (0, ε2m0 ) ⊂ (0, 1), x0 � ru0 and y0 � rv0. Also, by the mixed monotone prop-
erties, A1(x0, u0, y0) � A1(u0, x0, v0) and A2(x0, v0, y0) � A2(u0, y0, v0). Moreover,
combining (C2)(ii) with (2.6) and (2.7), we have on the one hand,

A1(x0, u0, y0) = A1

(
τ1(t0)[τ1(t0)]m−1h,

1

τ1(t0)

1

[τ1(t0)]m−1
h, τ2(s0)[τ2(s0)]m−1k

)
� ϕ1

(
t0, s0, [τ1(t0)]m−1h,

1

[τ1(t0)]m−1
h, [τ2(s0)]m−1k

)
A1

(
[τ1(t0)]m−1h,

1

[τ1(t0)]m−1
h, [τ2(s0)]m−1k

)
� ψ1(t0, s0, ε

m−1
0 )A1

(
[τ1(t0)]m−1h,

1

[τ1(t0)]m−1
h, [τ2(s0)]m−1k

)
� ψ1(t0, s0, ε

m−1
0 )...ψ1(t0, s0, 1)A1(h, h, k)

� ψ1(t0, s0, ε
m−1
0 )...ψ1(t0, s0, 1)τ1(t0)h

� ψ1(t0, s0, ε
m
0 )...ψ1(t0, s0, ε0)ε0h

� εm0 h = x0.

On the other hand,

A1(u0, x0, v0) = A1

(
1

[τ1(t0)]m
h, [τ1(t0)]mh,

1

[τ2(s0)]m
k

)
� 1

ϕ1

(
t0, s0,

1
[τ1(t0)]m

h, [τ1(t0)]mh, 1
[τ2(s0)]m

k
)

A1

(
1

[τ1(t0)]m−1
h, [τ1(t0)]m−1h,

1

[τ2(s0)]m−1
k

)
� 1

ψ1(t0, s0, εm0 )
A1

(
1

[τ1(t0)]m−1
h, [τ1(t0)]m−1h,

1

[τ2(s0)]m−1
k

)
� 1

ψ1(t0, s0, εm0 )
...

1

ψ1(t0, s0, ε0)
A1(h, h, k)

� 1

ψ1(t0, s0, εm0 )
...

1

ψ1(t0, s0, ε0)

1

τ1(t0)
h

� 1

εm0
h = u0.

in a similar way, we obtain

A2(x0, v0, y0) � y0 and A2(u0, y0, v0) � v0. 2

Theorem 2.3. Let P be a normal cone in a Banach space E. Consider two
operators A1, A2 : P ×P ×P −→ P such that (C1), (C2) in Lemma 2.2 hold. Then
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the operator Φ = (A1, A2) : Ph × Pk × Ph × Pk −→ Ph × Pk, defined by (2.1),
has a unique fixed point (x∗, y∗) ∈ Ph × Pk, that is, Φ(x∗, y∗, x∗, y∗) = (x∗, y∗), or
equivalently A1(x∗, x∗, y∗) = x∗ and A2(x∗, y∗, y∗) = y∗. Moreover, for any initial
x0, u0 ∈ Ph and y0, v0 ∈ Pk, constructing successively the sequences

(2.8)
xn = A1(xn−1, un−1, yn−1), yn = A2(xn−1, vn−1, yn−1),

un = A1(un−1, xn−1, vn−1), vn = A2(un−1, yn−1, vn−1),
n = 1, 2, ...,

we have ‖xn − x∗‖ −→ 0, ‖un − x∗‖ −→ 0 and ‖yn − y∗‖ −→ 0, ‖vn − y∗‖ −→ 0
(as n −→∞).

Proof. Let x0, u0 ∈ Ph, y0, v0 ∈ Pk and r ∈ (0, 1) be as obtained in Lemma 2.2 . By
constructing successively the sequences as in (2.8), and using Lemma 2.2 combined
with the mixed monotone property of the operators A1, A2, we obtain

x0 � x1 � ... � xn � ... � un � ... � u1 � u0,
y0 � y1 � ... � yn � ... � vn � ... � v1 � v0.

In addition, we have

xn � x0 � ru0 � run,
yn � y0 � rv0 � rvn,

n = 1, 2, ...

We put

rn = sup{r > 0 : xn � run and yn � rvn}, n = 1, 2, ...

Then, xn � rnun and yn � rnvn, n = 1, 2, ..., and therefore

xn+1 � xn � rnun � rnun+1,

yn+1 � yn � rnvn � rnvn+1,
n = 1, 2, ...

Hence, rn+1 ≥ rn, that is, {rn} is an increasing convergent sequence with {rn} ⊂
(0, 1]. Set r∗ = limn−→∞ rn. We claim that r∗ = 1, otherwise, 0 < rn ≤ r∗ < 1.
By (C2)(i), there exist t∗, s∗ ∈ (a, b) such that τ1(t∗) = r∗ and τ2(s∗) = r∗. We
distinguish two cases.
First case. There exists n0 such that rn0

= r∗. Thus, for all n ≥ n0 we have
rn = r∗ and

xn+1 = A1(xn, un, yn) � A1

(
rnun,

1

rn
xn, rnvn

)
= A1

(
τ1(t∗)un,

1

τ1(t∗)
xn, τ2(s∗)vn

)
� ϕ1(t∗, s∗, un, xn, vn)A1(un, xn, vn)

� ψ1 (t∗, s∗, εm0 )un+1,
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Analogously we have
yn+1 � ψ2(t∗, s∗, εm0 )vn+1.

Which means that

rn+1 = r∗ ≥ min{ψ1(t∗, s∗, εm0 ), ψ2(t∗, s∗, εm)}
> min{τ1(t∗), τ2(s∗)} = r∗.

This is a contradiction.
Second case. For all integer n, rn < r∗ < 1, then 0 <

rn
r∗

< 1. By (C2)(i), there

exist αn, βn ∈ (a, b) such that τ1(αn) = rn
r∗ = τ2(βn). In this case we have

xn+1 = A1(xn, un, yn)

� A1

(
rnun,

1

rn
xn, rnvn

)
= A1

(
rn
r∗
r∗un,

r∗

rn

1

r∗
xn,

rn
r∗
r∗vn

)
= A1

(
τ1(αn)r∗un,

1

τ1(αn)

1

r∗
xn, τ2(βn)r∗vn

)
� ϕ1

(
αn, βn, r

∗un,
1

r∗
xn, r

∗vn

)
A1

(
r∗un,

1

r∗
xn, r

∗vn

)
� ψ1(αn, βn, (r

∗ε0)m)ψ1(t∗, s∗, εm0 )un+1.

Analogously we obtain

yn+1 � ψ2(αn, βn, (r
∗ε0)m)ψ2(t∗, s∗, εm0 )vn+1.

It follows that

rn+1 ≥ min{ψ1(αn, βn, (r
∗ε0)m)ψ1(t∗, s∗, εm0 ), ψ2(αn, βn, (r

∗ε0)m)ψ2(t∗, s∗, εm0 )}
≥ min{τ1(αn)ψ1(t∗, s∗, εm0 ), τ2(βn)ψ2(t∗, s∗, εm0 )}

= min{rn
r∗
ψ1(t∗, s∗, εm0 ),

rn
r∗
ψ2(t∗, s∗, εm0 )}.

If n −→∞, we get

r∗ ≥ min{ψ1(t∗, s∗, εm0 ), ψ2(t∗, s∗, εm0 )}
> min{τ1(t∗), τ2(s∗)} = r∗.

This is also a contradiction.
Now, by the same reasoning as in [4, Theore 2.2] and [26, Lemma 2.1] we obtain

limn→∞ xn = limn→∞ un = x∗ and limn→∞ yn = limn→∞ vn = y∗. Hence

xn+1 = A1(xn, un, yn) � A1(x∗, x∗, y∗) � A1(un, xn, vn) = un+1,

yn+1 = A2(xn, vn, yn) � A2(x∗, y∗, y∗) � A2(un, yn, vn) = vn+1.



620 A. Sadrati and D. Aouragh

If n −→ ∞, we get x∗ = A1(x∗, x∗, y∗) and y∗ = A2(x∗, y∗, y∗). That is, (x∗, y∗) is
a fixed point of Φ in Ph × Pk.

Now, for any x0, u0 ∈ Ph and y0, v0 ∈ Pk, we can choose a small number
λ1 ∈ (0, 1) such that

λ1h � x0, u0 �
1

λ1
h, λ1k � y0, v0 �

1

λ1
k.

From (C2)(i), there exist t1, s1 ∈ (a, b) such that τ1(t1) = λ1 = τ2(s1), and hence

τ1(t1)h � x0, u0 �
1

τ1(t1)
h, τ2(s1)k � y0, v0 �

1

τ2(s1)
k.

Similarly to Lemma 2.2, set ε1 = min{[τ1(t1)], [τ2(s1)]} and choose a sufficiently
large integer m such that

m∏
i=1

[
ψ1(t1, s1, ε

i
1)

ε1

]
≥ 1

ε1
and

m∏
i=1

[
ψ2(t1, s1, ε

i
1)

ε1

]
≥ 1

ε1
.

Put x0 = εm1 h, u0 = 1
εm1
h, v0 = 1

εm1
k and y0 = εm1 k. Then, x0, u0 ∈ Ph and

y0, v0 ∈ Pk with x0 < x0, u0 < u0 and y0 < y0, v0 < v0. Construct the sequences

xn = A1(xn−1, un−1, yn−1), yn = A2(xn−1, vn−1, yn−1),

un = A1(un−1, xn−1, vn−1), vn = A2(un−1, yn−1, vn−1),
n = 1, 2, ...

Therefore, there exist (u∗, v∗) ∈ Ph × Pk such that Φ(u∗, v∗, u∗, v∗) = (u∗, v∗) and
limn→∞ xn = limn→∞ un = u∗, limn→∞ yn = limn→∞ vn = v∗. By the uniqueness
of fixed points of operator Φ in Ph×Pk, we have x∗ = u∗ and y∗ = v∗. Moreover, by
induction, xn � xn, un � un and yn � yn, vn � vn, for n = 1, 2, ... Finally, by the
normality of the cone P we get limn→∞ xn = limn→∞ un = x∗ and limn→∞ yn =
limn→∞ vn = v∗. 2

2.2. Competitive Mixed Monotone Vector Operator

We will give below, another result of existence and uniqueness of a fixed point
concerning competitive mixed monotone vector operators. Similarly to the case
of cooperative mixed monotone vector operators, we will have a lemma, then the
existence theorem. The steps of the proofs are not very far from those of the
previous case, for that we leave them to the reader.

Lemma 2.4. Let E be a real Banach space and P be a cone in E. Consider two
operators A1, A2 : P × P × P −→ P such that Φ = (A1, A2) satisfies the following
conditions:

(C1)′ Φ = (A1, A2) is competitive mixed monotone, and there exist h, k ∈ P with
h 6= θ, k 6= θ such that

A1(h, h, k) ∈ Ph and A2(h, k, k) ∈ Pk;
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(C2)′ There exist positive-valued functions τ on interval (a, b), ϕ1, ϕ2 on (a, b) ×
P × P × P and ψ1, ψ2 : (a, b)× (0, 1] such that

(i) τ : (a, b) −→ (0, 1) is surjection.

(ii) For any x, u ∈ Ph, for any y, v ∈ Pk, for any t ∈ (a, b) and any ε ∈ (0, 1]

inf
x,u∈[εh, 1εh],y∈[εk,

1
εk]
ϕ1(t, x, u, y) = ψ1(t, ε) > τ(t),

inf
x∈[εh, 1εh],v,y∈[εk,

1
εk]
ϕ2(t, x, v, y) = ψ2(t, ε) > τ(t)

and

A1

(
τ(t)x,

1

τ(t)
u,

1

τ(t)
y

)
� ϕ1(t, x, u, y)A1(x, u, y),

A2

(
1

τ(t)
x,

1

τ(t)
v, τ(t)y

)
� ϕ2(t, x, v, y)A2(x, v, y).

Then A1 : Ph × Ph × Pk −→ Ph, A2 : Ph × Pk × Pk −→ Pk. Moreover, there exist
x0, u0 ∈ Ph, y0, v0 ∈ Pk and r ∈ (0, 1) such that{

ru0 � x0 � u0,
rv0 � y0 � v0

and

{
x0 � A1(x0, u0, v0) � A1(u0, x0, y0) � u0,
y0 � A2(u0, v0, y0) � A2(x0, y0, v0) � v0.

Theorem 2.5. Let P be a normal cone in a Banach space E. Consider two
operators A1, A2 : P × P × P −→ P such that (C1)′ and (C2)′ of Lemma 2.4 hold.
Then, the operator Φ = (A1, A2) : Ph × Pk × Ph × Pk −→ Ph × Pk defined by (2.1)
has a unique fixed point (x∗, y∗) ∈ Ph × Pk, that is, Φ(x∗, y∗, x∗, y∗) = (x∗, y∗), or
equivalently A1(x∗, x∗, y∗) = x∗ and A2(x∗, y∗, y∗) = y∗. Moreover, for any initial
x0, u0 ∈ Ph and y0, v0 ∈ Pk, constructing successively the sequences

xn = A1(xn−1, un−1, vn−1), yn = A2(un−1, vn−1, yn−1),

un = A1(un−1, xn−1, yn−1), vn = A2(xn−1, yn−1, vn−1),
n = 1, 2, ...,

we have ‖xn − x∗‖ −→ 0, ‖un − x∗‖ −→ 0 and ‖yn − y∗‖ −→ 0, ‖vn − y∗‖ −→ 0
(as n −→∞).

3. Applications

In this section, we study the existence and uniqueness of the solution to a system
of nonlinear boundary value problems (SNBVPs for short), as applications to the
fixed point theorems in the previous section.

Consider the following systems of NBVPs

(3.1)


−x′′(t) + θ2x(t) = λf(t, x(t), x(t), y(t)), 0 < t < 1,

−y′′(t) + ω2y(t) = βg(t, x(t), y(t), y(t)), 0 < t < 1,

x′(0) = x′(1) = 1, y′(0) = y′(1) = 0,
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where θ and ω are positive constants, λ and β are positive parameters, f and g are
continuous functions.

Note that the existence results of the scalar version of the above systems, namely
nonlinear boundary value problems (NBVPs for short), was studied by many re-
searchers (see, e.g., [2, 12, 22, 23, 24] ) by using fixed piont theorem in cone.

Let C[0, 1] be the Banach space equipped with the sup norm. Set

P = {x ∈ C[0, 1], x(t) ≥ 0, t ∈ [0, 1]} .

It is easy to show that P is a normal cone in C[0, 1] of which the normality constant
is 1. By a positive solution of (3.1) we means a couple of functions (x, y) ∈ C2[0, 1]×
C2[0, 1], with x(t) and y(t) are positive on (0, 1), such that (x, y) satisfies the system
of differential equations and the boundary conditions in (3.1). It is well known that
the Green’s function Gm(t, s) for the boundary problem

(3.2)

{
−x′′(t) +m2x(t) = 0, 0 < t < 1,

x′(0) = x′(1) = 1

is

(3.3) Gm(t, s) =
1

ρm

{
ψm(s)ψm(1− t), 0 ≤ s ≤ t ≤ 1,

ψm(t)ψm(1− s), 0 ≤ t ≤ s ≤ 1,

where ρm = 1
2m(em−e−m), ψm(t) = 1

2 (emt+e−mt). In addition, ψm(t) is increasing
in t ∈ [0, 1] and 0 < Gm(t, s) ≤ Gm(t, t), 0 ≤ t, s ≤ 1. Also, we have the following
lemma.

Lemma 3.1.([24, Lemma 2.1]) Let Gm(t, s) be the Green’s function for the boundary
value problem (3.2). Then

Gm(t, s) ≥ Cψm(t)ψm(1− t)Gm(t0, s), t, t0, s ∈ [0, 1],

where C = 1
ψ2

m(1) .

In the sequel, we will need the following notations.
For t ∈ [0, 1], let

h(t) = ψθ(t)ψθ(1− t) and k(t) = ψω(t)ψω(1− t),(3.4)

where constants θ, ω replace m in the BVP (3.2). Then it is easy to check that

h0 = min
t∈[0,1]

h(t) =
1

4
(eθ + e−θ + 2), h0 = max

t∈[0,1]
h(t) =

1

2
(eθ + e−θ),

k0 = min
t∈[0,1]

k(t) =
1

4
(eω + e−ω + 2), k0 = max

t∈[0,1]
k(t) =

1

2
(eω + e−ω).
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Now, we are able to formulate and prove the main results in this section. The
following theorems give sufficient conditions so that SNBVP (3.1) has a unique
positive solution.

Theorem 3.2. Let f, g : [0, 1] × [0,∞) × [0,∞) × [0,∞) −→ [0,∞) be functions
satisfying

(H1) f, g : [0, 1] × [0,∞) × [0,∞) × [0,∞) −→ [0,∞) are continuous functions
such that for all t ∈ [0, 1], the functions f(t, ., u, y), f(t, x, u, .), g(t, ., u, y),
g(t, x, u, .) are nondecreasing and f(t, x, ., y), g(t, x, ., y) are nonincreasing.

(H2) There exist positive-value functions τi on (0, 1), φi on (0, 1)×(0, 1)× [0,∞)×
[0,∞)× [0,∞) (i = 1, 2) such that

(i) τ1, τ2 : (0, 1)→ (0, 1) are surjections.

(ii) For all x, u, y ∈ (0,∞), for all t ∈ [0, 1] and all γ, ν ∈ (0, 1)

(3.5)

f

(
t, τ1(γ)x,

1

τ1(γ)
u, τ2(ν)y

)
≥ φ1(γ, ν, x, u, y)f(t, x, u, y),

g

(
t, τ1(γ)x,

1

τ2(ν)
u, τ2(ν)y

)
≥ φ2(γ, ν, x, u, y)g(t, x, u, y).

Moreover, for any ε ∈ (0, 1)

(3.6)

inf
x,u∈[εh0,

1
εh

0],y∈[εk0, 1εk0]
φ1(γ, ν, x, u, y) > min{τ1(γ), τ2(ν)},

inf
x∈[εh0,

1
εh

0],u,y∈[εk0, 1εk0]
ϕ2(γ, ν, x, u, y) > min{τ1(γ), τ2(ν)}.

(H3) There exist continuous functions ai, bi : [0, 1] → R (i = 1, 2) and numbers
p, p′, q, q′ ∈ R such that

lim inf
|(x,y)|→+∞,u→0+

f(t, x, u, y)

|(x, y)|p
= a1(t), lim inf

|(x,y)|→+∞,u→0+

g(t, x, u, y)

|(x, y)|p′
= b1(t)

uniformly in t ∈ [0, 1] (with |(x, y)| = |x|+ |y|is the usual norm in R×R) and

lim sup
|(x,y)|→0+,u→+∞

f(t, x, u, y)

|(x, y)|q
= a2(t), lim sup

(x,y)→0+,u→+∞

g(t, x, u, y)

|(x, y)|q′
= b2(t)

uniformly in t ∈ [0, 1]. Moreover,

◦
A 6= ∅ and

◦
B 6= ∅,(3.7)

where A = {s ∈ [0, 1] : a1(s) 6= 0} and B = {s ∈ [0, 1] : b1(s) 6= 0}.
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Then, the SNBVP (3.1) has a unique positive solution (x∗λ, y
∗
β) in Ph × Pk.

Proof. We are going to prove that all hypotheses of Theorem 2.3 are verified for
adequate vector operator. First, it is a standard result that (x, y) is a solution of
the SNBVP (3.1) if, and only if

x(t) = λ

∫ 1

0

Gθ(t, s)f(s, x(s), x(s), y(s))ds,

y(t) = β

∫ 1

0

Gω(t, s)g(s, x(s), y(s), y(s))ds,

where Gθ(t, s) and Gω(t, s) are the Green’s functions as in (3.2). Define

A1,λ(x, u, y)(t) = λ

∫ 1

0

Gθ(t, s)f(s, x(s), u(s), y(s))ds,

A2,β(x, v, y)(t) = β

∫ 1

0

Gω(t, s)g(s, x(s), v(s), y(s))ds,

for any x, y, u, v ∈ P and set Φ(λ,β)(x, y, u, v) = (A1,λ(x, u, y), A2,β(x, v, y)). Then,
(xλ, yβ) is a solution of SNBVP (3.1) if, and only if Φ(λ,β)(xλ, yβ , xλ, yβ) = (xλ, yβ).

By (H1), it is easy to see that A1,λ, A2,β : P × P × P → P and that A1,λ, A2,β

are mixed monotone operators.
On the one hand, since Gθ(t, s) > 0, for all t, s ∈ [0, 1], using (3.7) we have

for t1 ∈ [0, 1] fix,
∫ 1

0
Gθ(t1, s)a1(s)ds > 0. It follows that for any ε > 0 verifying∫ 1

0
Gθ(t1, s)(a1(s)− ε)ds > 0, there exist numbers δ,M with 0 < δ < M such that

f(t, x, u, y) ≥ (a(t)− ε)(x+ y)p,∀(x, y) : (x+ y) ≥M,∀u ≤ δ, ∀t ∈ [0, 1].

Choose α ∈ (0, 1) satisfying 1
α (h0 + k0) ≥ M and αh0 ≤ δ. It follows that there

exist γ, ν ∈ (0, 1) such that τ1(γ) = α and τ2(ν) = α. Then for all t ∈ [0, 1]

A1,λ(h, h, k)(t)

= λ

∫ 1

0

Gθ(t, s)f(s, h(s), h(s), k(s))ds

= λ

∫ 1

0

Gθ(t, s)f

(
s, τ1(γ)

1

τ1(γ)
h(s),

1

τ1(γ)
τ1(γ)h(s), τ2(ν)

1

τ2(ν)
k(s)

)
ds

≥ λ

∫ 1

0

Gθ(t, s)φ1

(
γ, ν,

1

τ1(γ)
h(s), τ1(γ)h(s),

1

τ2(ν)
k(s)

)
(a1(s) − ε)

[
1

α
(h(s) + k(s))

]p
ds

≥ λ

∫ 1

0

Cψθ(t)ψθ(1 − t)Gθ(t1, s)(a1(s) − ε)α1−p [h(s) + k(s)]p ds

≥ λCh(t)α1−p(h0 + k0)p
∫ 1

0

Gθ(t1, s)(a1(s) − ε)ds.

Thus

A1,λ(h, h, k) �
(
λCα1−p(h0 + k0)p

∫ 1

0

Gθ(t1, s)(a1(s)− ε)ds
)
h.
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On the other hand, for any ε′ > 0 there exist numbers δ′,M ′ with 0 < δ′ < M ′

such that

f(t, x, u, y) ≤ (a2(t) + ε′)(x+ y)q,∀(x, y) : (x+ y) ≤ δ′,∀u ≥M ′,∀t ∈ [0, 1].

Choose α′ ∈ (0, 1) satisfying 1
α′h0 ≥ M ′, α′(h0 + k0) ≤ δ′. It follows that there

exist γ′, ν′ ∈ (0, 1) such that τ1(γ′) = α′ and τ2(ν′) = α′. Then for all t ∈ [0, 1]

A1,λ(h, h, k)(t)

= λ

∫ 1

0

Gθ(t, s)f(s, h(s), h(s), k(s))ds

≤ λ
∫ 1

0

Gθ(t, t)f

(
s,

1

τ1(γ′)
τ1(γ′)h(s), τ1(γ′)

1

τ1(γ′)
h(s),

1

τ2(ν′)
τ2(ν′)k(s)

)
ds

≤ λ
∫ 1

0

Gθ(t, t)
1

φ1 (γ′, ν′, h(s), h(s), k(s))
(a2(s) + ε′) [α′(h(s) + k(s)]

q
ds

≤ λ 1

ρθ
h(t)(α′)q−1(h0 + k0)q

∫ 1

0

(a2(s) + ε′)ds.

Thus

A1,λ(h, h, k) �
(
λ

1

ρθ
(α′)q−1(h0 + k0)q

∫ 1

0

(a2(s) + ε′)ds

)
h.

Consequently, A1,λ(h, h, k) ∈ Ph. Similarly, we get A2,β(h, k, k) ∈ Pk. The verifica-
tion of (C1) in Lemma 2.2 is completed.

Next, we prove that (C2) holds. Let x, u ∈ Ph, y ∈ Pk and γ, ν ∈ (0, 1). Set

a(x, u, y) = min{ inf
s∈[0,1]

x(s), inf
s∈[0,1]

u(s), inf
s∈[0,1]

y(s)},

b(x, u, y) = max{ sup
s∈[0,1]

x(s), sup
s∈[0,1]

u(s), sup
s∈[0,1]

y(s)},

and define

ϕ1(γ, ν, x, u, y) = inf
α,η,µ∈[a(x,u,y),b(x,u,y)]

φ1(γ, ν, α, η, µ).

Then, the first inequality of (2.3) in (C2) is verified and

A1,λ

(
τ1(γ)x,

1

τ1(γ)
u, τ2(ν)y

)
(t)

= λ

∫ 1

0

Gθ(t, s)f(s, τ1(γ)x(s),
1

τ1(γ)
u(s), τ2(ν)y(s))ds

≥ λ
∫ 1

0

Gθ(t, s)φ1(γ, ν, x(s), u(s), y(s))f(s, x(s), u(s), y(s))ds

≥ ϕ1(γ, ν, x, u, y)λ

∫ 1

0

Gθ(t, s)f(s, x(s), u(s), y(s))ds.
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Which means that

A1,λ

(
τ1(γ)x,

1

τ1(γ)
u, τ2(ν)y

)
� ϕ1(γ, ν, x, u, y)A1,λ(x, u, y).

Analogously, we do the same reasoning for A2,β . This complete the proof. 2

Remark 3.3. Note that in [26, Theorem 3.1], the authors suppose a condition
on their function f , which is equivalent in our case to f(t, h0, h

0, k0) > 0 and
g(t, h0, k

0, k0) > 0, for all t ∈ [0, 1]. But, our condition (3.7) in Theorem 3.2 is less
restrictive.

Example 3.4. Let a, b : [0, 1] −→ (0,+∞) be continuous functions. For any
positive numbers c, c′, d, d′ with 3c′ ≥ c > c′ and 2d′ ≥ d > d′, consider system (3.1)
by setting

f(t, x, u, y) = a(t)(x+ y)
(x+ y)2 + c

(x+ y)2 + c′
and g(t, x, u, y) = b(t)(x+ y)

(x+ y)3 + d

(x+ y)3 + d′
,

for all x, u, y ∈ [0,+∞) and all t ∈ [0, 1]. Then, we have for any surjective functions
τ1, τ2 : (0, 1) −→ (0, 1), and γ, ν ∈ (0, 1)

φ1(γ, ν, x, u, y) = min{τ1(γ), τ2(ν)} (τ1(γ)x+ τ2(ν)y)2 + c

(τ1(γ)x+ τ2(ν)y)2 + c′
(x+ y)2 + c′

(x+ y)2 + c
and

φ2(γ, ν, x, u, y) = min{τ1(γ), τ2(ν)} (τ1(γ)x+ τ2(ν)y)2 + d

(τ1(γ)x+ τ2(ν)y)2 + d′
(x+ y)2 + d′

(x+ y)2 + d
.

Thus, all hypotheses of Theorem 3.2 are verified. Therefore, system (3.1) with the
above functions has a unique solution in Ph×Pk, where functions h and k are given
by (3.4).

As an application of Theorem 2.5, we give the following result. The proof in
this case will be similar to that of Theorem 3.2. Since this is almost verbal, we leave
it to the reader.

Theorem 3.5. Let f, g : [0, 1] × [0,∞) × [0,∞) × [0,∞) −→ [0,∞) be functions
satisfying

(H1)′ f, g : [0, 1]× [0,∞)× [0,∞)× [0,∞) −→ [0,∞) are continuous functions such
that for all t ∈ [0, 1], the functions f(t, ., u, y), g(t, x, u, .) are nondecreasing
and f(t, x, ., y), f(t, x, u, .), g(t, ., u, y),g(t, x, ., y) are nonincreasing.

(H2)′ There exist positive-value function τ on (0, 1), positive-value functions φ1 and
φ2 on (0, 1)× [0,∞)× [0,∞)× [0,∞) such that

(i) τ : (0, 1)→ (0, 1) is surjection.
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(ii) For all x, u, y ∈ (0,∞), for all t ∈ [0, 1] and all γ ∈ (0, 1)

f

(
t, τ(γ)x,

1

τ(γ)
u,

1

τ(γ)
y

)
≥ φ1(γ, x, u, y)f(t, x, u, y),

g

(
t,

1

τ(γ)
x,

1

τ(γ)
u, τ(γ)y

)
≥ φ2(γ, x, u, y)g(t, x, u, y).

Moreover, for any ε ∈ (0, 1)

inf
x,u∈[εh0,

1
εh

0],y∈[εk0, 1εk0]
φ1(γ, x, u, y) > τ(γ),

inf
x∈[εh0,

1
εh

0],u,y∈[εk0, 1εk0]
ϕ2(γ, x, u, y) > τ(γ).

(H3)′ There exist continuous functions ai, bi : [0, 1] → R (i = 1, 2) and numbers
p, p′, q, q′ ∈ R such that

lim inf
(u,y)→(0+,0+)

lim inf
u,y 6=0,x→+∞

f(t, x, u, y)

xp
= a1(t),

lim inf
(x,u)→(0+,0+)

lim inf
x,u 6=0,y→+∞

g(t, x, u, y)

yp′
= b1(t)

uniformly in t ∈ [0, 1] and

lim sup
x→0+

lim sup
x6=0,(u,y)→(+∞,+∞)

f(t, x, u, y)

xq
= a2(t),

lim sup
y→0+

lim sup
y 6=0,(x,u)→(+∞,+∞)

g(t, x, u, y)

yq′
= b2(t)

uniformly in t ∈ [0, 1]. Moreover,

◦
A 6= ∅ and

◦
B 6= ∅,

where A = {s ∈ [0, 1] : a1(s) 6= 0} and B = {s ∈ [0, 1] : b1(s) 6= 0}.
Then, the SNBVP (3.1) has a unique positive solution (x∗λ, y

∗
β) in Ph × Pk.

Example 3.6. Let a, b : [0, 1] −→ (0,+∞) be continuous functions. For any
positive numbers c, c′, d, d′ with 3c′ ≥ c > c′ and 2d′ ≥ d > d′ , consider system
(3.1) by setting

f(t, x, u, y) = a(t)x
x2y + c

x2y + c′
and g(t, x, u, y) = b(t)y

y3x2 + d

y3x2 + d′
,

for all x, u, y ∈ [0,+∞) and all t ∈ [0, 1]. Then, we have for any surjective functions
τ : (0, 1) −→ (0, 1), and γ ∈ (0, 1)

φ1(γ, x, u, y) = τ(γ)
τ(γ)x2y + c

τ(γ)x2y + c′
x2y + c′

x2y + c
and

φ2(γ, x, u, y) = τ(γ)
τ(γ)y3x2 + d

τ(γ)y3x2 + d′
y3x2 + d′

y3x2 + d
.
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Thus, all hypotheses of Theorem 3.5 are verified. Therefore, system (3.1) with the
above functions has a unique solution in Ph×Pk, where functions h and k are given
by (3.4).
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