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EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A
SINGULAR SYSTEM OF NONLINEAR FRACTIONAL
DIFFERENTIAL EQUATIONS WITH INTEGRAL BOUNDARY
CONDITIONS

LIN WANG AND XINYI LU*

ABSTRACT. In this paper, we study the existence and uniqueness of so-
lutions for a singular system of nonlinear fractional differential equations
with integral boundary conditions. We obtain existence and uniqueness
results of solutions by using the properties of the Green’s function, a non-
linear alternative of Leray-Schauder type, Guo-Krasnoselskii’s fixed point
theorem in a cone. Some examples are included to show the applicability
of our results.
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1. Introduction

We consider the singular system of nonlinear fractional differential equations
with integral boundary conditions

Dg u(t) + f(t,v(t) =0,0 < t < 1,
DY v(t) + glt,u(t)) =0,0 <t < 1,

u(0) = /' (0) = --- = w2 (0) = 0,u(1) = u/n u(s)ds, (1)

Q
v(0) = 0'(0) = --- = v (0) = 0,v(1) = b/o v(s)ds,
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where n — 1 < a, 6 <nn >3,0<nc<1,0< %,% <1,f9:(0,1] x
[0,4+00) — [0,+00) are two given continuous functions and singular at t = 0
(that is, lims—o4 f(t,-) = +o0,lims04 g(t,+) = 400), and Dg‘_‘_,DgJr are the
standard fractional Riemann-Liouville’s derivatives.

The paper [8] considered the existence of positive solutions of singular coupled

system

Déu= f(t,v),0 <t <1,
DPy = g(t,u),0 <t <1,

where 0 < s,p < 1, and f,g : (0,1] x [0,+00) — [0,+00) are two given con-
tinuous functions, lim; o4 f(t,:) = 400, lim;— 04+ g(t,-) = 400 and D*, DP are
the standard fractional Riemann-Liouville’s derivatives. The existence results of
positive solution are obtained by a nonlinear alternative of Leray-Schauder type
and Guo-Krasnoselskii’s fixed point theorem in a cone.

The paper [9] considered the existence of positive solutions of singular coupled
system

D u(t) + f(t,v(t) =0,0 <t <1,

D o(t) + g(t,ut)) = 0,0 < t <1,

u(0) = /(0) = u(1) = v(0) = v'(0) = v(1) =0,
where 2 < o, 8 < 3 and f,g : (0,1] x [0,400) — [0,400) are two given contin-
uous functions, and lim;_,o4 f(¢,-) = +00,lim;04 g(t,-) = +00 and Df, D€+
are the standard fractional Riemann-Liouville’s derivatives. The two sufficient
conditions for the existence of solutions are obtained by a nonlinear alternative
of Leray-Schauder type and Guo-Krasnoselskii’s fixed point theorem in a cone.

Inspired by the work of the above papers and many known results, in this

paper, we study the existence of positive solutions of BVP (1). The BVP (1)
contains the above equations. The existence of solutions are obtained by a
nonlinear alternative of Leray-Schauder type and Guo-Krasnoselskii’s fixed point
theorem in a cone.

2. Background materials and Green’s function

For the convenience of the reader, we present here the necessary definitions,
lemmas and theorems from fractional calculus theory to facilitate analysis of
BVP (1). These definitions, lemmas and theorems can be found in the recent
literature, see [1-12].

Definition 2.1. The Riemann-Liouville fractional integral of order a > 0 of a
function y : (0,00) — R is given by

18, y(t) = ﬁ / (t — 5)° 1y (s)ds

provided the right-hand side is pointwise defined on (0, 00).
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Definition 2.2. The Riemann-Liouville fractional derivative of order o > 0 of
a continuous function y : (0,00) — R is given by

o oy L d ff ()
P = iy |, e

where n = [a] 4 1, [a] denotes the integer part of the number «, provided that
the right-hand side is pointwise defined on (0, 00).

From the definition of the Riemann-Liouville derivative, we can obtain the
statement.

Lemma 2.3 ([3]). Let a > 0. If we assume u € C(0,1) N L(0,1), then the
fractional differential equation

Dg,u(t) =0,

has u(t) = C1t 1 + Ot 2 4 .. + Cnt* N, C; € R,i = 1,2,..., N, as unique
solutions, where N is the smallest integer greater than or equal to c.

Lemma 2.4 ([3]). Assume that u € C(0,1)NL(0,1) with a fractional derivative
of order o > 0 that belongs to C'(0,1) N L(0,1). Then

I8, D§ u(t) = u(t) + Crt™ ' + Cot* 2 4+ + Oyt N,

for some C; € R,i=1,2,..., N, where N is the smallest integer greater than or
equal to a.

Remark 2.1 ([10]). The following properties are useful for our discussion:

IS5 f(8) = TP f(t), Dg, IS, f(t) = f(t), . 8> 0.

In the following, we present Green’s function of the fractional differential
equation boundary value problem.

Lemma 2.5. Given y € C|[0,1]. The problem

D ult) + y(t) = 0,
u(0) = w/(0) = -+ = u"2)(0) = 0,

n (2)
u(l) = M/o u(s)ds,

where ) <t<1l,n—1<a<n0<n<1,0< % < 1, has a unique solution

u(t):/0 Ga(t, s)y(s)ds,
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where Go(t, s) is Green’s function given by

[H(1=9)]" " = £ (=)t~ (1= L) (=)

) 0<s<t<ls<uy
a—1 )l _(1—Ep®)(t—s)*~ 1L
t* 1 (1—s) L(rll En™)(t—s) 0<n<s<t<,
Ga(t; 3) = a—1 ((11771%)1—‘(04)& a—1
T (A=s) T B (n—s) %t ,0<t<s<n<l;

(1—£22)1 ()
e < <s
(22 === =
Here, G, (t, s) is called the Green’s function of BVP (2). Obviously, G,(t, s)
is continuous on [0, 1] x [0, 1].
Proof. We may apply Lemma 2.2 to reduce (2) to an equivalent integral equation

u(t) = =I5 y(t) + Crt* 1 + Cot* 2 + -+ Oyt ™V,

for some C1,Cs,--- ,Cn € R. Consequently, the general solution of (2) is
1 t
u(t) = ——/ (t — )7 Ly(s)ds + C1t9=1 4+ Cot™2 4 - 1 Ot
I'(a) Jo
By u(0) =4/ (0) = --- = u("=2(0) = 0, there are Cy = C3 = --- = Cx = 0.
n

On the other hand, u(1) = ,u/ u(s)ds combining with
0

1 —g)e1
u(1) = _/O %y(s)dwcl

(@)
/077 u(s)ds = —ﬁ /077 /Om(as —8)* Yy (s)dsdx + Oy /0?7 s ds
= _ﬁ /on sn(x — 5)* ty(s)dzds + Cy /077 s> lds

yieds
1 -1
(1—s)" /" (n—s)*
C = . N4 uUno~ d - T A N4 uno. d .
=) T e ) S EE e
Therefore, the unique solution of the problem (2) is

o t(t—S)a_l \ds 1 1(1_8)a—1ta—1 s
u(t) = / Vs / L

Ly e
i >/ Moy v

[

For t <, one has

u(t) = —/0 (t}iy(s)ds
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el L) o
[

a a—1
[ o= s (s)ds]
7 o= 1 1 _ S oz 1 _ ,r] )atoz 1 (1 _ gna)(t _ S)a—l s
- / (1= Bl s
m e 1—8 —f(r] s)et y(5)ds

= / Go(t,s)y(s)ds.
0

o L
[ )

apa— 1

Tz
L)
(1—ﬂgna>/o oy V()

B L e U G 0 [
- | (= Eg)(a) y(s)ds
t tocfl(]_ _ S)afl _ (1 _ gna)(t _ S)afl
o = Zr(a) vspds
1 t(x—l(l S)a—l
+ [ T Eera e
/ Go(t,s)
The proof is complete. O

Lemma 2.6. The function G,(t,s) has the following properties:
(al) Gul(t, s) > O,Vt,s € (0,1).
(a2) Gal(t,s) > %t“ Ls(1—s)o=1 v, s € [0,1];

un o a—1
(a3) Galt,s) < [#3 + iy 51— 9)7 Vs € [0,1);
Proof. For s <t,s < 77,

_ - _gal_i _ aja—1 _ﬁ _ga—l
Caltis) = Goam )F(){[(l ) D G [ R
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>
>
>

Ga(tvs) =

<

<

<

Forn <s <t,

Gu(t,s)
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a— B o @y o— 1“'77@ a—
W{[t(l T (1= )T = (1= )t s) Y
W{W*s T R (L TR
a—1 a1 wn® o w1
@{[t(l —35)] —(t—s) } + T)F(a)[t(l —s)]
un®
=2 S a—1
NG ){[t(l_g)] [f(l—s)—(t—e)]}-&-T)F()[ t(1 — s)]
=L
a-1_ K oo mn® e
(1—% {[t(l_s)] l_g(n_s)t 1_(1—7)@—3) 1}
{( *—) (t(1 —$)*71 — (t —s)* 7Y
+"n“t“ 1[( 1-9* (1= 2}
n
un® t(l—s)
—7“{(1_7)‘“‘”/,,,5 »
e (- ) 7<1ff>”(175>0—1]}
@ n
_ ;m“ {( 77)(a t* 71— 9) " Ps(1 — 1)
+ﬁna a— 1(1_s)a 1[1_ _E)n]}
n
_!“1 )1’\ {( _%)(a_1)(1_5)0[7154‘%nails(l—s)ail}
a—1 #{;Lna 1 . _sail
[F(a) * (1—%)r(a)] (=™
= . {[t(l - = (1- “”a)(t s)o‘_l}
(1- %ﬂj(a) «@
un o - 1 N
ST e L VS L
1 a— a—
a9}
un® o [ | X
+ S t(1— )"
(1= 5 («)
S B P S S R
- s s(1— s _ s
- IN(w) (1— “25)T(a)
un”
2 = t2 1s(1 — 5)*!



Galtes) = gy (0 - ) syt
=m0 A A - - = B )
= (I—Tla)l“m){(l - %)[fﬁlU — ) = (t =)

L UCE)
71 — ﬁ a— e 2% %dx
S s oA (Gl [ a
+gna_1sta_1(1 — S)O‘_l}
< m{“ B 0 1R (1 - )7 21 )
+§na715ta71(1 — s)ail}
S et (L S LR R R (B
a—1 snpe-! a-1
< [F(a) + (1_%)“&)]5(175) .
For t < s <,
1 H
a = - 1— a—-1_ H/(  Nazoa—1
Galtis) = G mm = - G -9
1 7 s
— _ t(1 — a—l_ial_iata—l}
BT LT i)
1 a—1 13 « aya—1
> o Eera T s
1 a— Koo
= (1 une )F(Oé) [t(l S)] 1[1 - 577 (1 - S)]
1 wn”
_ +H1 — a—1 aa tH1 — a—1
71“(@)[ (I=s)* "+ -2 )F(a>[ (1—-s)]
pn” ) )
> O[d tOé— 1 _ o—
2 ot 0
1 a— H apo—
Galt,s) = m{[t(l —8)]* 7~ o =)t 1}
1
_ t(1 — a—1
= T e
_ 1 mmoa—1
< {Oz aMZa }S(l o S)afl
Plea)  (1—-#5)T(a)
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For n <s,t < s,

1 a—1
Gu(t,s) = W[t(l—s)]

un®

—<1 — %)F(a) t*ts(1 — 5)> 7L,

%

1 a—1
Ga(t,s) = WHG_S)]

b -1

a—1 o
[F(a) s :%“)r(a)}s(l

75)0471'

From above, (a2),(a3),(a4) are complete. Clearly, (al) is true. The proof is
complete. O

Similarly, the general solution of

Dy v(t) +y(t) =0,
v(0) = v'(0) = --- = v(*=2)(0) = 0,

e 3)
u(l) = b/o v(s)ds,

Where0<t<1,n—1<,8§n,0<c§1,0<%<1,is

o(t) = / Gt s)y(s)ds,

where Gg(t, s) can be obtained from G, (¢, s) by correspondingly replacing a, i, n
with 8, b, ¢ and satisfy properties (al)-(ad) with «, u, n correspondingly replaced
by ,b, cin case of Gg(t, s). Let (G, Gg) denote Green’s function for the bound-
ary value problem (1).

Lemma 2.7 ([13]). Let E be a Banach space and P € E be a cone. Assume
and Qs be two open subsets in E such that 8 € Qy and Q1 C Qo. Let operator
A (Q\Q) NP — P be completely continuous. Suppose that one of the two
conditions

(1) |Au|| < |lull,Yu € PN OQ; || Aull > Jjull,Vu € P NI,

and

CNAu|| > |Jull, Yu € PN oQ; || Au|l < ||lu|l, Vu € P NI

is satisfied. Then A has a fized point in (Q2\Q1) N P.

Lemma 2.8 ([14]). Let E be a Banach space and Q2 € E be closed and convez.
Assume U is a relatively open subset of E with 6 € U,and Let operator A : U — Q
be a continuous compact map. Then either

(1) A has a fized point in U; or

(2)there exists uw € OU and ¢ € (0,1) with u = pAu.
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3. Main results
Let the Banach space E = C[0, 1] have the maximum norm ||u|| = m[{ocui] lu(t)].
te(o,
Thus (E x E,| - |) is a Banach space with the norm defined by ||(u,v)| =
max{||ull, ||[v]|},V(u,v) € E x E. We define the cone P C E x E by

P={(u,v) € EX E|u(t) >0,v(t) >0,0<¢<1}.

Lemma 3.1. Let n — 1 < o, < n. Let F : (0,1] x [0,400) — [0,4+00) be
continuous and satisfy lim; o4 F(t,-) = 400. Assume that there ezxists 0 < o <
1 such that t°F(t) is continuous on [0,1]. Then u(t) = fol Go(t,s)F(s)ds is
continuous on [0, 1].

Proof. From the continuity of t°F(t) and u(t) = fol Go(t,s)t™ 7t F(s)ds, we
know that «(0) = 0. If u(t) — u(ty) when t — to for Vo € [0, 1], then the proof
is complete. In the following we separate the process into three cases.

Case 1. For tg = 0 and V¢ € (0,1]. Owing to the continuity of t° F'(¢), there
exists an M > 0 such that | t7F(t) |[< M, Vt € [0, 1], then

| u(t) — u(0) |
_ _/Ot(t_r(‘zj_ls—vsw(s)ds
+ _1%75) /01 (1?Za)ltals”saF(s)ds
N —1”11“> [ F@;wlg_gﬂ(s)ds |
< | /“}Q)Fum
o | e Ees|
< Afjﬁt(t;{Z;15“ds4—A4(1{j;§a)j£1(1“i¥2;fa1s”ds
= Aﬁ;UBu—may+$t%¥ﬁ1$Bu—@a)
< UHIMI=0) amojamty o0 ).

(1-ET(1+a—o0)

B(-) mentioned in the above functions shows the Beta function.
Case 2. For tg € (0,1) and Vt € (tg, 1], then

| ut) = ulto) |

_ _ ! (t B S)a_l § g s)ds
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1 1 1 — g)e—lpa—1
+ )/ (1= )t s77sF(s)ds
0

(- O
(1_1“?;) /O " aln _F(SO):”_ 5757 F(s)ds
- G (Z))al 57757 P(s)ds
~ama ), OOl
o [ _r<o)¢>tF (s)ds |
Ry QEXSECEL S

1 1 (1 _ S)a—l(t(x—l _ tg—l)s_ﬂsa S\ds
T ), r@ red

1 PEmee T oy
(1- ) | I(a) Fls)d
i (t — S)a_l s 0g°
/ o F(s)ds |
- to —5)° - sT987F(s)ds |

[

1+ g 1 (1 _S)afl(tafl _tgtfl) s
+|(1l?za)/0 Ta) s77s7F(s)ds |

¢ (t—s)ot

I(a)
M/ 0 _ S)a—l 0 _ S) —1 —7ds

><ta 1 t“ H ra-set
) /0 s %ds

+ |

s7787F(s)ds |

— M ()
' (t )" o
+M /to Ta) ds
M(t*~ — 157°)
IN())
(14 L)MT(1—-0)
(1- —)I‘(lJra—a)

(L+ S)MEet — 57"
(1-#5)0(o)

(t77 — 877 4t ) S 0t — to).

B(l—-o0,a)+ B(l —o,a)
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Case 3. For ¢y € (0,1] and Vt € [0,t9). Similarly to the proof of Case 2, so
we omit it. The proof is complete. O

From Lemma 2.3, we can write the system of BVPs (1) as an equivalent
system of integral equations

u(t) :/O Goalt, s) f(5,0(s))ds, 0 < £ < 1,

1 (4)
o(t) :/0 Gt )g(s, u(s))ds, 0 < £ < 1,

which can be proved in the same way as Lemma 3.3 in [10]. For convenience,
the proof is omitted.
We define A: E x E — E x E to be an operator, i.e.,

A(u,v)(t)

— (/01Ga(t,S)S_Ulsglf(S,U(S))dS,/01Gﬂ(t,s)s_UQSUQQ(S,u(S))ds)
= (Ajv(t), Asu(t)).

Lemma 3.2. Let n — 1 < «o,8 < n. Let f,g : (0,1] x [0,400) — [0,400)
be continuous and satisfy lim_o4 f(t,-) = +o00,lim;_ o4 g(¢,-) = +o00. Assume
that there exists 0 < 01,09 < 1 such that t°* f(t,y),t2g(t,y) are continuous on
[0,1] x [0,00). Then the operator A : P — P is completely continuous .

Proof. For any (u,v) € P, we have that

wweP ={yeE|yt) >0,0<t<1}.
Since )

Ajv(t) :/0 Go(t,8)s™ 717 f(s,v(s))ds,

we get that A; : P, — P; by Lemma 3.1 and the nonnegativity of f. Set
vo € Py and |jvg]| = ¢o. If v € P; and ||[v — vo|| < 1, then |[v]] < 1+ ¢ := ¢
By the continuity of ¢t f(t,y), we get that ¢t f(¢,y) is uniformly continuous
on [0,1] x [0, ¢], namely Ve > 0,35 > 0(6 < 1), when | y; — y2 |< , we have
[t f(t, 1) =t f(t,y2) |< &,Vt € [0,1],y1,y2 € [0, c]. Obviously, if ||v—wg|| < 4,
then vg(t),v(t) € [0,¢] and |v(t) — vo(t)| < §,V¢t € [0,1]. Hence, we have

[ 17 f(t,0(8) =17 f(E, w0 (D) |< e, ()
for all t € [0,1],v € P1,|Jv — vo| < 4. It follows from (6), we can get
|[A1v — Ajwol] = max | Ajo(t) — Arvo(t) |
t€(0,1]
1
<  max / Gia(t,s)s™ 7t | s f(s,v(s)) — s f(s,v0(s)) | ds
t€(0,1] 0

1
< e[| Gialt,s)s™7tds
0
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1 pn . o—1
a—1 =n 1
< + e 1— ) 'snd
< <[ [t@ A Ee s
a_l Mna—l 1 11
_ + « _ 1—g)o —o14
[T+ im0 e
%na—l

_ ot

It T Erw 2o

Owing to the arbitrariness of vg, we know that A; : P, — Py is continuous.
Similarly, we can get that As : Py — P is continuous. So we proved A : P — P
is continuous. O

Let M C P be bounded. That is to say there exists a constant [ > 0 such
that ||(u,v)|| <1,V(u,v) € M. Since t°* f(t,y),t°2 f(t, y) are continuous on [0, 1] x
[0, +00), let L = max;c(01],(u,v)em
{t7 f(t,v(t)), t72g(t, u(t))} + 1. Then for each (u,v) € M, we have

1
| Ajo(t) | < /o Gia(t,s)s™7 | s71 f(s,v(s)) | ds

L/o [F(a)1+(1_ugu)1—\(a)}5(1—5) s 7tds

mmoa—1 _
L[a—l—i— ol F2=a1)

(k%)}r(wra—al)'

IN

Hence, we have

pnpa—1

n F'2-o1)
A = A t <L - 1 = @ .
Ao trél[gﬁﬁ w(t)] < [0‘ + (1— &)} F2+a—oy)

[

Similarly, we have

bn of-1 (2 — 09)
Agul| = A <L|g-1 2
o] = ma. | Ayu(t)] < L[~ 1+ <1bgﬂr<2+ﬂ—ag>
Thus,
A, v)ll = max {|Arv], |4>ul}
pn o a—1
= F(2—0'1)
< — 14 e :
= max{[o‘ +(1—%)}F(2+a—01)
WAL 0 (2= 0y)
—1+ L 2_p
[B (1_bcﬁﬁ>:|r(2+6—0'2>}

Therefore, A(M) is bounded.
Next, we prove that A is equicontinuous.
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. fe(1=21)T(14a—01) c(1-2 )P (148-02)
Let § = mln{2“+1(1+%)LF(17011)’ ST D) IT (=0 )}, for Ve > 0. Then for
all (u,v) € M,t1,t2 € [0,1] with t; < t3 and O <ty —1t1 < 0, we have

| Ajo(tz) — Avv(t) |
= |/Gt2, (s,v( dS—/Gth f(s,0(s))ds |

= |- (b2 = s)* — (1 —9) 5*"1 71 f(s,v(s))ds
- 1= — (s, v(5))d

+ 1W7a) /01 - S)Q_l(tg_l = t?_l)s_glsglf(sav(s))dS

( (o)
LR s T
e (o) Jlovond

t2 (t2_3)a_1 —01 01
_ / T G ()ds |

o)
A LY
14+ £ 1 _ Ja—1lpoa—1  4a-—1
+ | 1 +u% )/0 Sl F(Ef;) 4 )Sialsolf(s,v(s))d3|
¥ / tQ s Z 0T o4 o, v |
tz—s) Lt —s) ! s
<uf o) @
LO+5)s™ =007 fa—s?t
( ) /0 Ta) s %ds
+L /)52 @21:(23;_13_”%3
L(ta—ol ta—al) (1 + %)L(ta71 _ tafl)
= 2 T 1 B(l—oy,a)+ 1 %)F(a; B(1—o01,q)
(1 %)Lr(l -0 ) a—oq a—oq a— a—
< - ZQ)I‘(lJrajm)(tz — T T =T,
Similarly,

- (1+ 8)IT(1 - 0y)
S (- W) L(1+8—a2)
amor _ygamor gaml_gal yfizoa yBmon yf=l 4871y the

o e )

| Agu(tg) Agu(tl)
Hence we figure on ¢5

following three cases.
Case 1. If 0 < t1 < 0,0 <ty < 20, then
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T YT ST < (20)0 7 < 2n6 T 10T <ty < (20)2 < 27
Case 2. If 0 < t1 <ty <0, then

ETT 0T <G < g < ong T T < gt < st < 2,
Case 3. If 6 <t; <ty <1, then

to
17—t = (o — 01)/ 27 My < (@ —0y)(ta — 1)ty < (a
t1
0'1)5 < 2“6 .
2
tot -9 = (a - 1)/ 227 2dr < (a—1)(ta — 1)t 72 < (a0 — 1)5 < 276.

t
Hence, '

| Aﬂ}(tg) — Aﬂ}(tl) |< % + % =
Similarly,

| AQ'U,(tQ) — Agu(tl) |< £.
Therefore, A(M) is equicontinuous, and by Arzela-Ascoli’s theorem, we obtain
that A(M) is a relatively compact set, then we prove operator A : P — P is
completely continuous.

Now we give the three results of this paper.

Theorem 3.3. Let n — 1 < o, < n. Let f,g : (0,1] x [0,4+00) — [0,+00)
be continuous and satisfy lim; o4 f(t,-) = +00,limy_04 g(t,+) = +00. Assume
that there exists 0 < 01,09 < 1 such that t°* f(t,y),t72g(t,y) are continuous

n [0,1] x [0,400) and there exist to € (0,1) and two positive constants p,§

subjectmg to p > max{ 5(°‘Q1)1 : 5(@:3 }, where
matg

a

23]

1
my = —% / 171 — 5)* tds,mg = —F——
a- 0= J,

Further suppose
(9(t,) € 0,1] x [0,6], 17 f(t,9) > 2D 172 1,) > LD

m2t§ Ty

(4d)¥(t,y) € [0,1] x [0, p],

1 f(t,y) < L”“ o) to2g(t,y) < 9253;51””
o1+ 2 I (20) b1+ Erir e o2)

Then BVP (1) has at least one positive solution.

Proof. From the conditions we obtain p > max{g(aim, g(ﬁ;ﬂ}) } > & We divide

the demonstration into two steps.
Step 1. Let 4 = {(u,v) € P | |Ju|| <&, |v| < &} such that 0 < u(t),v(t) <&
for (u,v) € PN o and V¢ € [0,1]. By condition (i) and Lemma 2.4, we get

1
Av(ty) = /OGa(to,s)s*"ls"lf(s,v(s))ds

1
> Go(to,s)s 7 s  f(s,v(s))ds

to
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(o) /1 - -1 -1,—
- & 0T s(1 —8)* s ds = &
ity T —Em
Hence,
|A1v]| = max |Ajv(t)| > &, Vv € Pr N OQ;.
te[0,1]

Similarly,
|Aqu|| = max |Asu(t)] > &, Vu € Py NIQy.
te(0,1]

Therefore, [[A(u,v)|| = & = |[(u, v)].
Step 2. Let Qo = {(u,v) € P | |lul]| < p,||v]| < p}.V(u,v) € PN I, t € [0,1],
we have that 0 < u(t),v(t) < p. By condition (i) and Lemma 2.4, we get

Al’l)(t)
1
= /Gla(t,s)s*(’ls"lf(s,v(s))ds
0
I'(2 — Lra—1 i pa=1
< A2 ta- o) / (S + |-
[o—1+ ZLr@ -0y Jo LTl@) © (1= 55)0(a)
s(1—s)*"ts771ds
= p.

Then we obtain
|A1v]| < p, Yo € P NONy.
Similarly,
[|[Aqu|| = max |Agu(t)] < p,Yu € P N ONs.
te[0,1]

)

Therefore, || A(u, v)]| < p = |[(u,v)]].
Besides,by Lemma 3.2,0perator A : P — P is completely continuous. Then
with Lemma 2.5, our proof is complete. O

Theorem 3.4. Let n — 1 < a,8 < n. Let f,g : (0,1] x [0,400) — [0,400)
be continuous and satisfy lims_o4 f(t,-) = +00,lim;_ 04 g(¢,-) = +o00. Assume
that there exists 0 < 01,09 < 1 such that t°* f(t,y),t2g(t,y) are continuous on
[0,1] x [0,4+00). Suppose they satisfy the following conditions (iii) there exist
two continuous and nondecreasing functions v, : [0,4+00) — (0, +00) such that

7 f(ty) < @(y), t72g(ty) < P(y), V(¢ y) € [0,1] x [0, +00);
(tv)there exists an r > 0, yielding
e Ta eeT > M {[ — 1+ %"“”} [(2-0;) [5_ 1+ %"EB”] [(2-02)
max{@(r), 9 (1)} ax |« (- £ | T(2Fa—or)” | Tt [

(1)
Then the BVP (1) has a positive solution.

Proof. Let U = {(u,v) € P | |lul]| <r||v|] <7}, sothat U C P. By Lemma
3.2, we get to know that operator A : U — P is completely continuous. And if
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there exists (u,v) € OU and X € (0,1), we have (u,v) = AA(u,v), then by (iii)
for ¢ € [0, 1], we obtain

1
u(t) = )\Alv(t):)\/o Go(t,s)f(s,v(s))ds

< /0 Gol(t,8)s7 717 f(s,v(s))ds
1
< /0 Gu(t,s)s 7 o(v(s))ds
< wawny/ Gralt, s)s~"1ds
1 /mna 1 1 1o
< el [§ay + = W)ﬂwyéu—g S ds
B . 1 Nanna 1 o
= el [Ty + = ﬂgﬁmﬂB@ L a).
Hence, )
ERpo— I'(2—o1)
| Il < (0D o~ 1+ 55 | e oy
- Jul L el pRogy
e(ll(w,v)I) = [a b (1— %)} Fr2+a—op)
Similarly,
& L BT -0
At om = 1+@,uyﬂ @+ 5-02)
Consequently,

un o a—1 bn B
TrsE R e Sma"{[o‘ 1+ nw )}rfz(i;i?n [5 I+ bcﬁ)}r(rz(igg)w
Again by (iv) we know ||(u,v)| # r Wthh contradicts that (u,v) € OU. Then
based on Lemma 2.6, there is a fixed point (u,v) € U. Therefore the BVP (1)
has a positive solution. O

Example 3.1. For any n — 1 < o, < n, take tg = %,E > 0 and p > 0 with
47 Mg(am1) 4PTNE(A-1) gy = 1 ;

p > max{—,=—, —=—}. Choose g1 = 02 = 3. Consider the boundary

value problem to the singular system of fractional equations

Dg u(t) + <2 =0,0 <t <1,

Vit
Div(t) + 2R =0,0 <t <1,
u(0) = w(0) = -+ = u"2)(0) = 0, u(1) :%/ u( ©)
O
v(O):v’(O):---:U("_Q)(O)zo o( %/ o(
0
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where c1, co are constants satisfying

un _a—1
£ _ p{F(? ta—on) (=14 T2 - 01)}
- x> bn o a—1 ?

my [ — 1+ ﬁ]r@—ol)

pn  B—1
_ _ (8 — B _

4ﬂ71£1—\(ﬁ) <o < p{F(Q—i-B 02) (ﬂ 1+ (1_%))11(2 02)}
———— << yrper:

Z 51+ 200G - o)

B

Denote f(t,y) = Cljzy,g(t,y) = % Then f,g are continuous on (0, 1] X
[0,4+00) and limy_, 4 f(2,-) = 400, lims_04 g(t, ) = +00. All conditions of The-
orem 3. hold. Therefore, BVP (8) has at least one positive solution.

Example 3.2. Consider the boundary value problem to the following singular

system of fractional equations
t—1)% In(2+v(t))

DE,u(t) + ¢ —0,0<t<l,
2 (t— )% In(2+u(t
D, v(t) + E2mzre®) 0,0<t<1,
w(0) = ' (0) = 0,u(l) = %/2 u(s)ds, (7)
Ol
v(0) = v'(0) = 0, 0(1) = %/2 v(s)ds,
0

Denote f, g are continuous on (0, 1] x [0, +00) and lim;_o4 f(t,-) = 400, lims— 04+
g(t,") = 4o00. Choose 01 = g2 = 1 and ¢(y) = ¢(y) = In(2 + y), then we have

1y2 n )
VIERERO) < 0 (2 4 (1)), V(L y) € [0,1] x [0,+00). @4 ¢ [0, +00) —

(0, 4+00) are continuous, nondecreasing functions, so condition (iii) of Theorem
3.2 holds. Next set = 1. Then condition (iv) of Theorem 3.2 holds. Therefore,
BVP (8) has at least one positive solution.
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