• Title/Summary/Keyword: Boron Doping

Search Result 142, Processing Time 0.028 seconds

Investigation of Optimal Channel Doping Concentration for 0.1\;μm SOI-MOSFET by Process and Device Simulation ([ 0.1\;μm ] SOI-MOSFET의 적정 채널도핑농도에 관한 시뮬레이션 연구)

  • Choe, Kwang-Su
    • Korean Journal of Materials Research
    • /
    • v.18 no.5
    • /
    • pp.272-276
    • /
    • 2008
  • In submicron MOSFET devices, maintaining the ratio between the channel length (L) and the channel depth (D) at 3 : 1 or larger is known to be critical in preventing deleterious short-channel effects. In this study, n-type SOI-MOSFETs with a channel length of $0.1\;{\mu}m$ and a Si film thickness (channel depth) of $0.033\;{\mu}m$ (L : D = 3 : 1) were virtually fabricated using a TSUPREM-4 process simulator. To form functioning transistors on the very thin Si film, a protective layer of $0.08\;{\mu}m$-thick surface oxide was deposited prior to the source/drain ion implantation so as to dampen the speed of the incoming As ions. The p-type boron doping concentration of the Si film, in which the device channel is formed, was used as the key variable in the process simulation. The finished devices were electrically tested with a Medici device simulator. The result showed that, for a given channel doping concentration of $1.9{\sim}2.5\;{\times}\;10^{18}\;cm^{-3}$, the threshold voltage was $0.5{\sim}0.7\;V$, and the subthreshold swing was $70{\sim}80\;mV/dec$. These value ranges are all fairly reasonable and should form a 'magic region' in which SOI-MOSFETs run optimally.

Fabrication of Circular Diaphragm for Piezoelectric Acoustic Devices

  • Lee, Woon-Seob;Kim, Yong-Chul;Lee, Jin-Seung;Lee, Seok-Woo;Lee, Seung-S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.1
    • /
    • pp.52-57
    • /
    • 2005
  • This paper describes a fabrication method of a circular diaphragm using boron etching stop method. It will be applied to acoustic transducers such as microphones or microspeakers and so on. The sensitivity is expected to be increased with the circular diaphragm through the simulation results to compare with a general rectangular diaphragm. The borondoped layer which is doped with solid source is sufficient for achieving an etching stop in 20 wt% TMAH, and the thickness is about $7.4{\mu}m$. The diameter of the circular silicon nitride diaphragm was measured to be 2 mm with $1{\mu}m$ thickness. The fabrication of piezoelectric acoustic devices was completed.

Quality evaluation of diamond wire-sawn gallium-doped silicon wafers

  • Lee, Kyoung Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.3
    • /
    • pp.119-123
    • /
    • 2013
  • Most of the world's solar cells in photovoltaic industry are currently fabricated using crystalline silicon. Czochralski-grown silicon crystals are more expensive than multicrystalline silicon crystals. The future of solar-grade Czochralski-grown silicon crystals crucially depends on whether it is usable for the mass-production of high-efficiency solar cells or not. It is generally believed that the main obstacle for making solar-grade Czochralski-grown silicon crystals a perfect high-efficiency solar cell material is presently light-induced degradation problem. In this work, the substitution of boron with gallium in p-type silicon single crystal is studied as an alternative to reduce the extent of lifetime degradation. The diamond-wire sawing technology is employed to slice the silicon ingot. In this paper, the quality of the diamond wire-sawn gallium-doped silicon wafers is studied from the chemical, electrical and structural points of view. It is found that the characteristic of gallium-doped silicon wafers including texturing behavior and surface metallic impurities are same as that of conventional boron-doped Czochralski crystals.

Electrical Properties of Boron-Doped Amorphous Silicon Ambipolar Thin Film Transistor (보론 도우핑된 비정질 실리콘을 이용한 쌍극 박막 트랜지스터의 전기적 특성)

  • Chu, Hye-Yong;Jang, Jin
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.5
    • /
    • pp.38-45
    • /
    • 1989
  • We have studied the electrical characteristics of the hydrogenated amorphous silicon (a-Si:H) ambiploar thin film transistors (TET'S)using 100ppm boron-doped a-Si:H as an active layer. The enhancement of drain current due to the double injection behavior has been observed in the p-channel operation of the TFT. The drain current decreases with time in streched exponential form when the gate voltage is positive. The result indicates that the dangling bonds created by electron accumulation show identical time dependence as the diffusion of hydrogen in the film. We observed the experimental evidence that the doping efficiency changes either when the gate bias is applied or when the light is illuminated on boron-doped a-Si:H.

  • PDF

Heteroatom-doped carbon nanostructures as non-precious cathode catalysts for PEMFC (이종 원자 도핑 탄소 나노재료를 이용한 PEMFC Cathode용 촉매 합성 및 평가)

  • Jo, G.Y.;Shanmugam, S.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.406-409
    • /
    • 2012
  • Recently, enormous research efforts have been focused on the development of non-precious catalysts to replace Pt for electrocatalytic oxygen reduction reaction (ORR), and to reduce the cost of proton exchange membrane fuel cells (PEMFCs). In recent years, heteroatom (N, B, and P) doped carbon nanostructures have been received enormous importance as a non-precious electrode materials for oxygen reduction. Doping of foreign atom into carbon is able to modify electronic properties of carbon materials. In this study, nitrogen and boron doped carbon nanostructures were synthesized by using a facile and cost-effective thermal annealing route and prepared nanostructures were used as a non-precious electrocatalysts for the ORR in alkaline electrolyte. The nitrogen doped carbon nanocapsules (NCNCs) exhibited higher activity than that of a commercial Pt/C catalyst, excellent stability and resistance to methanol oxidation. The boron-doped carbon nanostructure (BC) prepared at $900^{\circ}C$ showed higher ORR activity than BCs prepared lower temperature (800, $700^{\circ}C$). The heteroatom doped carbon nanomaterials could be promising candidates as a metal-free catalysts for ORR in the PEMFCs.

  • PDF

A Study on the Characteristics of Laser Processing in the DLC Thin Film according to Boron Doped Content (보론 도핑 여부에 따른 DLC 박막의 레이저 가공 특성 변화 연구)

  • Son, Ye-Jin;Choi, Ji-yeon;Kim, Tae-Gyu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.4
    • /
    • pp.155-160
    • /
    • 2019
  • Diamond Like Carbon (DLC) is a metastable form of amorphous carbon that have superior material properties such as high mechanical hardness, chemical inertness, abrasion resistance, and biocompatibility. Furthermore, its material properties can be tuned by additional doping such as nitrogen or boron. However, either pure DLC or doped DLC show poor adhesion property that makes it difficult to apply contact processing technique. Therefore we propose ultrafast laser micromachining which is non-contact precision process without mechanical degradation. In this study, we developed precision machining process of DLC thin film using an ultrafast laser by investigating the process window in terms of laser fluence and laser wavelength. We have also demonstrated various patterns on the film without generating any microcracks and debris.

Influence of Boron Content on the Thermoelectric Properties of p-type Si0.8Ge0.2 Alloy (Si0.8Ge0.2계 합금에서 열전특성에 미치는 B의 영향)

  • Hwang, Sung-Doo;Choi, Woo-Suk;Park, Ik-Min;Park, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.14 no.4
    • /
    • pp.272-276
    • /
    • 2007
  • P-type thermoelectric material $Si_{0.8}Ge_{0.2}$ was sintered by Hot Press process (HP) and the effect of boron ($0.25{\sim}2$ at%) addition on the thermoelectric properties were reported. To enhance the thermoelectric performances, the $Si_{0.8}Ge_{0.2}$, alloys were fabricated by mechanical alloying (MA) and HP. The carrier of p-type SiGe alloy was controlled by B-doping. The effect of sintering condition and thermoelectric properties were investigated. B-doped SiGe alloys exhibited positive seebeck coefficient. The electrical conductivity and thermal conductivity were increased at the small amount of boron content ($0.25{\sim}0.5$ at%). However, they were decreased over 0.5 at% boron content. As a result, the small addition of boron improved the Z value. The Z value of 0.5 at% B doped $Si_{0.8}Ge_{0.2}$ B alloy was $0.9{\times}10{-4}/K$, the highest value among the prepared alloys.

Effects of B Doping on Structural, Optical, and Electrical Properties of ZnO Nanorods Grown by Hydrothermal Method

  • Kim, Soaram;Nam, Giwoong;Park, Hyunggil;Yoon, Hyunsik;Kim, Byunggu;Kim, Jin Soo;Kim, Jong Su;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.337-337
    • /
    • 2013
  • ZnO seed layers were deposited on a quartz substrate using the sol-gel method, and B-doped ZnO (BZO) nanorods with different B concentrations ranging from 0 to 2.5 at.% were grown on the ZnO seed layers by the hydrothermal method. The structural, optical, electrical propertiesof the ZnO and BZO nanorods were investigated using field-emission scanning electron microscopy, X-ray diffraction (XRD), photoluminescence (PL), ultraviolet-visible spectroscopy, and hall effect. The ZnO and BZO nanorods grew well aligned on the surface of the quartz substrates. From the XRD data, it can be seen that the B doping is responsible for the distortion of the ZnO lattice. The PL spectra show near-band-edge emission and deep-level emission, and they also show that B doping significantly affects the PL properties of ZnO nanorods. The optical band gaps are changed by B doping, and thus the Urbach energy value changed with the optical band gap of the ZnO nanorods. From the hall measurements, it can be observed that the values of electrical resistivity, carrier concentration, and mobility are changed by B doping.

  • PDF

Study on Auger Recombination Control using Barrier SiO2 in High-Quality Polysilicon/Tunneling oxide based Emitter Formation (고품질 polysilicon/tunneling oxide 기반의 에미터 형성 공정에서의 Auger 재결합 조절 연구)

  • Huiyeon Lee;SuBeom Hong;Donghwan Kim
    • Current Photovoltaic Research
    • /
    • v.12 no.2
    • /
    • pp.31-36
    • /
    • 2024
  • Passivating contacts are a promising technology for achieving high efficiency Si solar cells by reducing direct metal/Si contact. Among them, a polysilicon (poly-Si) based passivating contact solar cells achieve high passivation quality through a tunnel oxide (SiOx) and poly-Si. In poly-Si/SiOx based solar cells, the passivation quality depends on the amount of dopant in-diffused into the bulk-Si. Therefore, our study fabricated cells by inserting silicon oxide (SiO2) as a doping barrier before doping and analyzed the barrier effect of SiO2. In the experiments, p+ poly-Si was formed using spin on dopant (SOD) method, and samples ware fabricated by controlling formation conditions such as existence of doping barrier and poly-Si thickness. Completed samples were measured using quasi steady state photoconductance (QSSPC). Based on these results, it was confirmed that possibility of achieving high Voc by inserting a doping barrier even with thin poly-Si. In conclusion, an improvement in implied Voc of up to approximately 20 mV was achieved compared to results with thicker poly-Si results.

Potential of chemical rounding for the performance enhancement of pyramid textured p-type emitters and bifacial n-PERT Si cells

  • Song, Inseol;Lee, Hyunju;Lee, Sang-Won;Bae, Soohyun;Hyun, Ji Yeon;Kang, Yoonmook;Lee, Hae-Seok;Ohshita, Yoshio;Ogurad, Atsushi;Kim, Donghwan
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1268-1274
    • /
    • 2018
  • We have investigated the effects of chemical rounding (CR) on the surface passivation and/or antireflection performance of $AlO_{x^-}$ and $AlO_x/SiN_x:H$ stack-passivated pyramid textured $p^+$-emitters with two different boron doping concentrations, and on the performance of bifacial n-PERT Si solar cells with a front pyramid textured $p^+$-emitter. From experimental results, we found that chemical rounding markedly enhances the passivation performance of $AlO_x$ layers on pyramid textured $p^+$-emitters, and the level of performance enhancement strongly depends on boron doping concentration. Meanwhile, chemical rounding increases solar-weighted reflectance ($R_{SW}$) from ~2.5 to ~3.7% for the $AlO_x/SiN_x:H$ stack-passivated pyramid textured $p^+$-emitters after 200-sec chemical rounding. Consequently, compared to non-rounded bifacial n-PERT Si cells, the short circuit current density Jsc of 200-sec-rounded bifacial n-PERT Si cells with ~60 and ${\sim}100{\Omega}/sq$ $p^+$-emitters is reduced by 0.8 and $0.6mA/cm^2$, respectively under front $p^+$-emitter side illumination. However, the loss in the short circuit current density Jsc is fully offset by the increased fill factor FF by 0.8 and 1.5% for the 200-sec-rounded cells with ~60 and ${\im}100{\Omega}/sq$ $p^+$-emitters, respectively. In particular, the cell efficiency of the 200-sec-rounded cells with a ${\sim}100{\Omega}/sq$ $p^+$-emitter is enhanced as a result, compared to that of the non-rounded cells. Based on our results, it could be expected that the cell efficiency of bifacial n-PERT Si cells would be improved without additional complicated and costly processes if chemical rounding and boron doping processes can be properly optimized.