DOI QR코드

DOI QR Code

Potential of chemical rounding for the performance enhancement of pyramid textured p-type emitters and bifacial n-PERT Si cells

  • Song, Inseol (KU-KIST Green School, Graduate School of Energy and Environment, Korea University) ;
  • Lee, Hyunju (Toyota Technological Institute) ;
  • Lee, Sang-Won (Department of Materials Science and Engineering, Korea University) ;
  • Bae, Soohyun (Department of Materials Science and Engineering, Korea University) ;
  • Hyun, Ji Yeon (Department of Materials Science and Engineering, Korea University) ;
  • Kang, Yoonmook (KU-KIST Green School, Graduate School of Energy and Environment, Korea University) ;
  • Lee, Hae-Seok (KU-KIST Green School, Graduate School of Energy and Environment, Korea University) ;
  • Ohshita, Yoshio (Toyota Technological Institute) ;
  • Ogurad, Atsushi (School of Science and Technology, Meiji University) ;
  • Kim, Donghwan (KU-KIST Green School, Graduate School of Energy and Environment, Korea University)
  • Received : 2018.05.03
  • Accepted : 2018.07.09
  • Published : 2018.11.30

Abstract

We have investigated the effects of chemical rounding (CR) on the surface passivation and/or antireflection performance of $AlO_{x^-}$ and $AlO_x/SiN_x:H$ stack-passivated pyramid textured $p^+$-emitters with two different boron doping concentrations, and on the performance of bifacial n-PERT Si solar cells with a front pyramid textured $p^+$-emitter. From experimental results, we found that chemical rounding markedly enhances the passivation performance of $AlO_x$ layers on pyramid textured $p^+$-emitters, and the level of performance enhancement strongly depends on boron doping concentration. Meanwhile, chemical rounding increases solar-weighted reflectance ($R_{SW}$) from ~2.5 to ~3.7% for the $AlO_x/SiN_x:H$ stack-passivated pyramid textured $p^+$-emitters after 200-sec chemical rounding. Consequently, compared to non-rounded bifacial n-PERT Si cells, the short circuit current density Jsc of 200-sec-rounded bifacial n-PERT Si cells with ~60 and ${\sim}100{\Omega}/sq$ $p^+$-emitters is reduced by 0.8 and $0.6mA/cm^2$, respectively under front $p^+$-emitter side illumination. However, the loss in the short circuit current density Jsc is fully offset by the increased fill factor FF by 0.8 and 1.5% for the 200-sec-rounded cells with ~60 and ${\im}100{\Omega}/sq$ $p^+$-emitters, respectively. In particular, the cell efficiency of the 200-sec-rounded cells with a ${\sim}100{\Omega}/sq$ $p^+$-emitter is enhanced as a result, compared to that of the non-rounded cells. Based on our results, it could be expected that the cell efficiency of bifacial n-PERT Si cells would be improved without additional complicated and costly processes if chemical rounding and boron doping processes can be properly optimized.

Keywords

Acknowledgement

Supported by : Korea Institute of Energy Technology Evaluation and Planning (KETEP)

References

  1. P. Campbell, M.A. Green, Light trapping properties of pyramidally textured surfaces, J. Appl. Phys. 62 (1987) 243-249. https://doi.org/10.1063/1.339189
  2. M.F. Abdullah, M.A. Alghoul, H. Naser, N. Asim, S. Ahmadi, B. Yatim, K. Sopian, Research and development efforts on texturization to reduce the optical losses at front surface of silicon solar cell, Renew. Sustain. Energy Rev. 66 (2016) 380-398. https://doi.org/10.1016/j.rser.2016.07.065
  3. C. Battaglia, A. Cuevas, S. De Wolf, High-efficiency crystalline silicon solar cells: status and perspectives, Energy Environ. Sci. 9 (2016) 1552-1576. https://doi.org/10.1039/C5EE03380B
  4. E. Franklin, K. Fong, K. McIntosh, A. Fell, A. Blakers, T. Kho, D. Walter, D. Wang, N. Zin, M. Stocks, E.-C. Wang, N. Grant, Y. Wan, Y. Yang, X. Zhang, Z. Feng, P.J. Verlinden, Design, fabrication and characterisation of a 24.4% efficient interdigitated back contact solar cell, Prog. Photovoltaics Res. Appl. 24 (2016) 411-427. https://doi.org/10.1002/pip.2556
  5. M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, A.W.Y. Ho- Baillie, Solar cell efficiency tables (version 51), Prog. Photovoltaics Res. Appl. 26 (2018) 3-12. https://doi.org/10.1002/pip.2978
  6. Y. Komatsu, D. Harata, E.W. Schuring, A.H.G. Vlooswijk, S. Katori, S. Fujita, P.R. Venemad, I. Cesar, Calibration of electrochemical capacitance-voltage method on pyramid texture surface using scanning electron microscopy, Energy Procedia 38 (2013) 94-100. https://doi.org/10.1016/j.egypro.2013.07.254
  7. V. Velidandla, J. Xu, Z. Hou, K. Wijekoon, D. Tanner, Texture process monitoring in solar cell manufacturing using optical metrology, Proc. 37th IEEE Photovoltaic Spec. Conf, 2011, pp. 1744-1747 Seattle, WA, USA.
  8. H. Angermann, J. Rappich, L. Korte, I. Sieber, E. Conrad, M. Schmidt, K. Hubener, J. Polte, J. Hauschild, Wet-chemical passivation of atomically flat and structured silicon substrates for solar cell application, Appl. Surf. Sci. 254 (2008) 3615-3625. https://doi.org/10.1016/j.apsusc.2007.10.099
  9. M. Edwards, S. Bowden, U. Das, M. Burrows, Effect of texturing and surface preparation on lifetime and cell performance in heterojunction silicon solar cells, Sol. Energy Mater. Sol. Cells 92 (2008) 1373-1377. https://doi.org/10.1016/j.solmat.2008.05.011
  10. A. Stesmans, V.V. Afanas'ev, Thermally induced interface degradation in (100) and (111) analyzed by electron spin resonance, J. Vac. Sci. Technol., B: Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 16 (1998) 3108-3111. https://doi.org/10.1116/1.590449
  11. C.H. Hsueh, A.G. Evans, Oxidation induced stresses and some effects on the behavior of oxide films, J. Appl. Phys. 54 (1983) 6672-6686. https://doi.org/10.1063/1.331854
  12. P.J. Cousins, J.E. Cotter, Minimizing lifetime degradation associated with thermal oxidation of upright randomly textured silicon surfaces, Sol. Energy Mater. Sol. Cells 90 (2006) 228-240. https://doi.org/10.1016/j.solmat.2005.03.008
  13. K.R. McIntosh, L.P. Johnson, Recombination at textured silicon surfaces passivated with silicon dioxide, J. Appl. Phys. 105 (2009) 124520-124521-124520-10.
  14. D. Macdonald, L.J. Geerligs, Recombination activity of interstitial iron and other transition metal point defects in p- and n-type crystalline silicon, Appl. Phys. Lett. 85 (2004) 4061-4063. https://doi.org/10.1063/1.1812833
  15. J.E. Cotter, J.H. Guo, P.J. Cousins, M.D. Abbott, F.W. Chen, K.C. Fisher, P-type versus n-type silicon wafers: prospects for high-efficiency commercial silicon solar cells, IEEE Trans. Electron. Dev. 53 (2006) 1893-1901. https://doi.org/10.1109/TED.2006.878026
  16. B. Aissa, M.M. Kivambe, M.I. Hossain, O. El Daif, A.A. Abdallah, F. Ali, N. Tabet, Emerging frontiers of n-type silicon material for photovoltaic applications: the impurity- defect interactions, Front. Nanosci. Nanotech. 1 (2015) 2-12. https://doi.org/10.15761/FNN.1000102
  17. P.P. Altermatt, H. Plagwitz, R. Bock, J. Schmidt, R. Brendel, M.J. Kerr, A. Cuevas, The surface recombination velocity at boron-doped emitters: comparison between various passivation techniques, Proc. 21st Eur. Photovoltaic Solar Energy Conf, Dresden, Germany, 2006, pp. 647-650.
  18. W. Jellett, C. Zhang, H. Jin, P.J. Smith, K.J. Weber, Boron emitters: defects at the silicon-silicon dioxide interface, Proc. 33rd IEEE Photovoltaic Spec. Conf, 2008, pp. 1-6 San Diego, CA, USA.
  19. D.S. Saynova, I.G. Romijn, I. Cesar, M.W.P.E. Lamers, A. Gutjahr, G. Dingemans, H.C.M. Knoops, B.W.H. van de Loo, W.M.M. Kessels, O. Siarheyeva, E. Granneman, L. Gautero, D.M. Borsa, P.R. Venema, A.H.G. Vlooswijk, Dielectric passivation schemes for high efficiency n-type c-Si solar cells, Proc. 28th Eur. Photovoltaic Solar Energy Conf, 2013, pp. 1188-1193 Paris, France.
  20. B. Hoex, J. Schmidt, R. Bock, P.P. Altermatt, M.C.M. van de Sanden, W.M.M. Kessels, Excellent passivation of highly doped p-type Si surfaces by the negative-charge- dielectric $Al_2O_3$, Appl. Phys. Lett. 91 (2007) 112107-1-112107-3.
  21. S. Duttagupta, F. Lin, K.D. Shetty, A.G. Aberle, B. Hoex, Excellent boron emitter passivation for high-efficiency Si wafer solar cells using $AlO_x/SiN_x$ dielectric stacks deposited in an industrial inline plasma reactor, Prog. Photovoltaics Res. Appl. 21 (2013) 760-764.
  22. A. Richter, J. Benick, M. Hermle, Boron emitter passivation with $Al_2O_3$ and $Al_2O_3$/$SiN_x$ stacks using ALD $Al_2O_3$, IEEE J. Photovoltaics 3 (2013) 236-245. https://doi.org/10.1109/JPHOTOV.2012.2226145
  23. W. Liang, K.J. Weber, D. Suh, S.P. Phang, J. Yu, A.K. McAuley, B.R. Legg, Surface passivation of boron-diffused p-type silicon surfaces with (1 0 0) and (1 1 1) orientations by ALD $Al_2O_3$ Layers, IEEE J. Photovoltaics 3 (2013) 678-683. https://doi.org/10.1109/JPHOTOV.2012.2235525
  24. D.E. Kane, R.M. Swanson, Measurement of the emitter saturation current by a contact less photoconductivity decay method, Proc. 18th IEEE Photovoltaic Spec. Conf, 1985, pp. 578-583 Las Vegas, NV, USA.
  25. A. Cuevas, R.A. Sinton, Prediction of the open-circuit voltage of solar cells from the steady-state photoconductance, Prog. Photovoltaics Res. Appl. 5 (1997) 79-90. https://doi.org/10.1002/(SICI)1099-159X(199703/04)5:2<79::AID-PIP155>3.0.CO;2-J
  26. F.D. Heinz, M. Breitwieser, P. Gundel, M. König, M. Hörteis, W. Warta, M.C. Schubert, Microscopic origin of the aluminium assisted spiking effects in ntype silicon solar cells, Sol. Energy Mater. Sol. Cells 131 (2014) 105-109. https://doi.org/10.1016/j.solmat.2014.05.036
  27. B.W. Schneider, N.N. Lal, S. Baker-Finch, T.P. White, Pyramidal surface textures for light trapping and antireflection in perovskite-on-silicon tandem solar cells, Optic Express 22 (2014) A1422-A1430. https://doi.org/10.1364/OE.22.0A1422
  28. J. Werner, B. Niesen, C. Ballif, Perovskite/silicon tandem solar cells: marriage of convenience or true love story? - an overview, Adv. Mater. Interfaces (5) (2017) 1700731-1-1700731-19.
  29. M.I. Hossain, W. Qarony, V. Jovanov, Y.H. Tsang, D. Knipp, Nanophotonic design of perovskite/silicon tandem solar cells, J. Mater. Chem. A 6 (2018) 3625-3633. https://doi.org/10.1039/C8TA00628H

Cited by

  1. Recent Progress in Interconnection Layer for Hybrid Photovoltaic Tandems vol.32, pp.51, 2020, https://doi.org/10.1002/adma.202002196
  2. Perovskites fabricated on textured silicon surfaces for tandem solar cells vol.3, pp.1, 2018, https://doi.org/10.1038/s42004-020-0283-4