Acknowledgement
Supported by : Korea Institute of Energy Technology Evaluation and Planning (KETEP)
References
- P. Campbell, M.A. Green, Light trapping properties of pyramidally textured surfaces, J. Appl. Phys. 62 (1987) 243-249. https://doi.org/10.1063/1.339189
- M.F. Abdullah, M.A. Alghoul, H. Naser, N. Asim, S. Ahmadi, B. Yatim, K. Sopian, Research and development efforts on texturization to reduce the optical losses at front surface of silicon solar cell, Renew. Sustain. Energy Rev. 66 (2016) 380-398. https://doi.org/10.1016/j.rser.2016.07.065
- C. Battaglia, A. Cuevas, S. De Wolf, High-efficiency crystalline silicon solar cells: status and perspectives, Energy Environ. Sci. 9 (2016) 1552-1576. https://doi.org/10.1039/C5EE03380B
- E. Franklin, K. Fong, K. McIntosh, A. Fell, A. Blakers, T. Kho, D. Walter, D. Wang, N. Zin, M. Stocks, E.-C. Wang, N. Grant, Y. Wan, Y. Yang, X. Zhang, Z. Feng, P.J. Verlinden, Design, fabrication and characterisation of a 24.4% efficient interdigitated back contact solar cell, Prog. Photovoltaics Res. Appl. 24 (2016) 411-427. https://doi.org/10.1002/pip.2556
- M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, A.W.Y. Ho- Baillie, Solar cell efficiency tables (version 51), Prog. Photovoltaics Res. Appl. 26 (2018) 3-12. https://doi.org/10.1002/pip.2978
- Y. Komatsu, D. Harata, E.W. Schuring, A.H.G. Vlooswijk, S. Katori, S. Fujita, P.R. Venemad, I. Cesar, Calibration of electrochemical capacitance-voltage method on pyramid texture surface using scanning electron microscopy, Energy Procedia 38 (2013) 94-100. https://doi.org/10.1016/j.egypro.2013.07.254
- V. Velidandla, J. Xu, Z. Hou, K. Wijekoon, D. Tanner, Texture process monitoring in solar cell manufacturing using optical metrology, Proc. 37th IEEE Photovoltaic Spec. Conf, 2011, pp. 1744-1747 Seattle, WA, USA.
- H. Angermann, J. Rappich, L. Korte, I. Sieber, E. Conrad, M. Schmidt, K. Hubener, J. Polte, J. Hauschild, Wet-chemical passivation of atomically flat and structured silicon substrates for solar cell application, Appl. Surf. Sci. 254 (2008) 3615-3625. https://doi.org/10.1016/j.apsusc.2007.10.099
- M. Edwards, S. Bowden, U. Das, M. Burrows, Effect of texturing and surface preparation on lifetime and cell performance in heterojunction silicon solar cells, Sol. Energy Mater. Sol. Cells 92 (2008) 1373-1377. https://doi.org/10.1016/j.solmat.2008.05.011
- A. Stesmans, V.V. Afanas'ev, Thermally induced interface degradation in (100) and (111) analyzed by electron spin resonance, J. Vac. Sci. Technol., B: Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 16 (1998) 3108-3111. https://doi.org/10.1116/1.590449
- C.H. Hsueh, A.G. Evans, Oxidation induced stresses and some effects on the behavior of oxide films, J. Appl. Phys. 54 (1983) 6672-6686. https://doi.org/10.1063/1.331854
- P.J. Cousins, J.E. Cotter, Minimizing lifetime degradation associated with thermal oxidation of upright randomly textured silicon surfaces, Sol. Energy Mater. Sol. Cells 90 (2006) 228-240. https://doi.org/10.1016/j.solmat.2005.03.008
- K.R. McIntosh, L.P. Johnson, Recombination at textured silicon surfaces passivated with silicon dioxide, J. Appl. Phys. 105 (2009) 124520-124521-124520-10.
- D. Macdonald, L.J. Geerligs, Recombination activity of interstitial iron and other transition metal point defects in p- and n-type crystalline silicon, Appl. Phys. Lett. 85 (2004) 4061-4063. https://doi.org/10.1063/1.1812833
- J.E. Cotter, J.H. Guo, P.J. Cousins, M.D. Abbott, F.W. Chen, K.C. Fisher, P-type versus n-type silicon wafers: prospects for high-efficiency commercial silicon solar cells, IEEE Trans. Electron. Dev. 53 (2006) 1893-1901. https://doi.org/10.1109/TED.2006.878026
- B. Aissa, M.M. Kivambe, M.I. Hossain, O. El Daif, A.A. Abdallah, F. Ali, N. Tabet, Emerging frontiers of n-type silicon material for photovoltaic applications: the impurity- defect interactions, Front. Nanosci. Nanotech. 1 (2015) 2-12. https://doi.org/10.15761/FNN.1000102
- P.P. Altermatt, H. Plagwitz, R. Bock, J. Schmidt, R. Brendel, M.J. Kerr, A. Cuevas, The surface recombination velocity at boron-doped emitters: comparison between various passivation techniques, Proc. 21st Eur. Photovoltaic Solar Energy Conf, Dresden, Germany, 2006, pp. 647-650.
- W. Jellett, C. Zhang, H. Jin, P.J. Smith, K.J. Weber, Boron emitters: defects at the silicon-silicon dioxide interface, Proc. 33rd IEEE Photovoltaic Spec. Conf, 2008, pp. 1-6 San Diego, CA, USA.
- D.S. Saynova, I.G. Romijn, I. Cesar, M.W.P.E. Lamers, A. Gutjahr, G. Dingemans, H.C.M. Knoops, B.W.H. van de Loo, W.M.M. Kessels, O. Siarheyeva, E. Granneman, L. Gautero, D.M. Borsa, P.R. Venema, A.H.G. Vlooswijk, Dielectric passivation schemes for high efficiency n-type c-Si solar cells, Proc. 28th Eur. Photovoltaic Solar Energy Conf, 2013, pp. 1188-1193 Paris, France.
-
B. Hoex, J. Schmidt, R. Bock, P.P. Altermatt, M.C.M. van de Sanden, W.M.M. Kessels, Excellent passivation of highly doped p-type Si surfaces by the negative-charge- dielectric
$Al_2O_3$ , Appl. Phys. Lett. 91 (2007) 112107-1-112107-3. -
S. Duttagupta, F. Lin, K.D. Shetty, A.G. Aberle, B. Hoex, Excellent boron emitter passivation for high-efficiency Si wafer solar cells using
$AlO_x/SiN_x$ dielectric stacks deposited in an industrial inline plasma reactor, Prog. Photovoltaics Res. Appl. 21 (2013) 760-764. -
A. Richter, J. Benick, M. Hermle, Boron emitter passivation with
$Al_2O_3$ and$Al_2O_3$ /$SiN_x$ stacks using ALD$Al_2O_3$ , IEEE J. Photovoltaics 3 (2013) 236-245. https://doi.org/10.1109/JPHOTOV.2012.2226145 -
W. Liang, K.J. Weber, D. Suh, S.P. Phang, J. Yu, A.K. McAuley, B.R. Legg, Surface passivation of boron-diffused p-type silicon surfaces with (1 0 0) and (1 1 1) orientations by ALD
$Al_2O_3$ Layers, IEEE J. Photovoltaics 3 (2013) 678-683. https://doi.org/10.1109/JPHOTOV.2012.2235525 - D.E. Kane, R.M. Swanson, Measurement of the emitter saturation current by a contact less photoconductivity decay method, Proc. 18th IEEE Photovoltaic Spec. Conf, 1985, pp. 578-583 Las Vegas, NV, USA.
- A. Cuevas, R.A. Sinton, Prediction of the open-circuit voltage of solar cells from the steady-state photoconductance, Prog. Photovoltaics Res. Appl. 5 (1997) 79-90. https://doi.org/10.1002/(SICI)1099-159X(199703/04)5:2<79::AID-PIP155>3.0.CO;2-J
- F.D. Heinz, M. Breitwieser, P. Gundel, M. König, M. Hörteis, W. Warta, M.C. Schubert, Microscopic origin of the aluminium assisted spiking effects in ntype silicon solar cells, Sol. Energy Mater. Sol. Cells 131 (2014) 105-109. https://doi.org/10.1016/j.solmat.2014.05.036
- B.W. Schneider, N.N. Lal, S. Baker-Finch, T.P. White, Pyramidal surface textures for light trapping and antireflection in perovskite-on-silicon tandem solar cells, Optic Express 22 (2014) A1422-A1430. https://doi.org/10.1364/OE.22.0A1422
- J. Werner, B. Niesen, C. Ballif, Perovskite/silicon tandem solar cells: marriage of convenience or true love story? - an overview, Adv. Mater. Interfaces (5) (2017) 1700731-1-1700731-19.
- M.I. Hossain, W. Qarony, V. Jovanov, Y.H. Tsang, D. Knipp, Nanophotonic design of perovskite/silicon tandem solar cells, J. Mater. Chem. A 6 (2018) 3625-3633. https://doi.org/10.1039/C8TA00628H
Cited by
- Recent Progress in Interconnection Layer for Hybrid Photovoltaic Tandems vol.32, pp.51, 2020, https://doi.org/10.1002/adma.202002196
- Perovskites fabricated on textured silicon surfaces for tandem solar cells vol.3, pp.1, 2018, https://doi.org/10.1038/s42004-020-0283-4