• Title/Summary/Keyword: Bootstrap hypothesis test

Search Result 25, Processing Time 0.021 seconds

ENTROPY-BASED GOODNESS OF FIT TEST FOR A COMPOSITE HYPOTHESIS

  • Lee, Sangyeol
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.351-363
    • /
    • 2016
  • In this paper, we consider the entropy-based goodness of fit test (Vasicek's test) for a composite hypothesis. The test measures the discrepancy between the nonparametric entropy estimate and the parametric entropy estimate obtained from an assumed parametric family of distributions. It is shown that the proposed test is asymptotically normal under regularity conditions, but is affected by parameter estimates. As a remedy, a bootstrap version of Vasicek's test is proposed. Simulation results are provided for illustration.

Resampling-based Test of Hypothesis in L1-Regression

  • Kim, Bu-Yong
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.3
    • /
    • pp.643-655
    • /
    • 2004
  • L$_1$-estimator in the linear regression model is widely recognized to have superior robustness in the presence of vertical outliers. While the L$_1$-estimation procedures and algorithms have been developed quite well, less progress has been made with the hypothesis test in the multiple L$_1$-regression. This article suggests computer-intensive resampling approaches, jackknife and bootstrap methods, to estimating the variance of L$_1$-estimator and the scale parameter that are required to compute the test statistics. Monte Carlo simulation studies are performed to measure the power of tests in small samples. The simulation results indicate that bootstrap estimation method is the most powerful one when it is employed to the likelihood ratio test.

A Nonparametric Bootstrap Test and Estimation for Change

  • Kim, Jae-Hee
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.2
    • /
    • pp.443-457
    • /
    • 2007
  • This paper deals with the problem of testing the existence of change in mean and estimating the change-point using nonparametric bootstrap technique. A test statistic using Gombay and Horvath (1990)'s functional form is applied to derive a test statistic and nonparametric change-point estimator with bootstrapping idea. Achieved significance level of the test is calculated for the proposed test to show the evidence against the null hypothesis. MSE and percentiles of the bootstrap change-point estimators are given to show the distribution of the proposed estimator in simulation.

The Generalized Logistic Models with Transformations

  • Yeo, In-Kwon;Richard a. Johnson
    • Journal of the Korean Statistical Society
    • /
    • v.27 no.4
    • /
    • pp.495-506
    • /
    • 1998
  • The proposed class of generalized logistic models, indexed by an extra parameter, can be used to model or to examine symmetric or asymmetric discrepancies from the logistic model. When there are a finite number of different design points, we are mainly concerned with maximum likelihood estimation of parameters and in deriving their large sample behavior A score test and a bootstrap hypothesis test are also considered to check if the standard logistic model is appropriate to fit the data or if a generalization is needed .

  • PDF

Stationary bootstrap test for jumps in high-frequency financial asset data

  • Hwang, Eunju;Shin, Dong Wan
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.2
    • /
    • pp.163-177
    • /
    • 2016
  • We consider a jump diffusion process for high-frequency financial asset data. We apply the stationary bootstrapping to construct a bootstrap test for jumps. First-order asymptotic validity is established for the stationary bootstrapping of the jump ratio test under the null hypothesis of no jump. Consistency of the stationary bootstrap test is proved under the alternative of jumps. A Monte-Carlo experiment shows the advantage of a stationary bootstrapping test over the test based on the normal asymptotic theory. The proposed bootstrap test is applied to construct continuous-jump decomposition of the daily realized variance of the KOSPI for the year 2008 of the world-wide financial crisis.

Application of Bootstrap Method for Change Point Test based on Kernel Density Estimator

  • Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.1
    • /
    • pp.107-117
    • /
    • 2004
  • Change point testing problem is considered. Kernel density estimators are used for constructing proposed change point test statistics. The proposed method can be used to the hypothesis testing of not only parameter change but also distributional change. Bootstrap method is applied to get the sampling distribution of proposed test statistic. Small sample Monte Carlo Simulation were also conducted in order to show the performance of proposed method.

  • PDF

Comparison of the Power of Bootstrap Two-Sample Test and Wilcoxon Rank Sum Test for Positively Skewed Population

  • Heo, Sunyeong
    • Journal of Integrative Natural Science
    • /
    • v.15 no.1
    • /
    • pp.9-18
    • /
    • 2022
  • This research examines the power of bootstrap two-sample test, and compares it with the powers of two-sample t-test and Wilcoxon rank sum test, through simulation. For simulation work, a positively skewed and heavy tailed distribution was selected as a population distribution, the chi-square distributions with three degrees of freedom, χ23. For two independent samples, the fist sample was selected from χ23. The second sample was selected independently from the same χ23 as the first sample, and calculated d+ax for each sampled value x, a randomly selected value from χ23. The d in d+ax has from 0 to 5 by 0.5 interval, and the a has from 1.0 to 1.5 by 0.1 interval. The powers of three methods were evaluated for the sample sizes 10,20,30,40,50. The null hypothesis was the two population medians being equal for Bootstrap two-sample test and Wilcoxon rank sum test, and the two population means being equal for the two-sample t-test. The powers were obtained using r program language; wilcox.test() in r base package for Wilcoxon rank sum test, t.test() in r base package for the two-sample t-test, boot.two.bca() in r wBoot pacakge for the bootstrap two-sample test. Simulation results show that the power of Wilcoxon rank sum test is the best for all 330 (n,a,d) combinations and the power of two-sample t-test comes next, and the power of bootstrap two-sample comes last. As the results, it can be recommended to use the classic inference methods if there are widely accepted and used methods, in terms of time, costs, sometimes power.

Testing for Overdispersion in a Bivariate Negative Binomial Distribution Using Bootstrap Method (이변량 음이항 모형에서 붓스트랩 방법을 이용한 과대산포에 대한 검정)

  • Jhun, Myoung-Shic;Jung, Byoung-Cheol
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.2
    • /
    • pp.341-353
    • /
    • 2008
  • The bootstrap method for the score test statistic is proposed in a bivariate negative binomial distribution. The Monte Carlo study shows that the score test for testing overdispersion underestimates the nominal significance level, while the score test for "intrinsic correlation" overestimates the nominal one. To overcome this problem, we propose a bootstrap method for the score test. We find that bootstrap methods keep the significance level close to the nominal significance level for testing the hypothesis. An empirical example is provided to illustrate the results.

A Comparative Study on Tests of Correlation (상관계수에 대한 검정법 비교)

  • Cho, Hyun-Joo;Song, Myung-Unn;Jeong, Dong-Myung;Song, Jae-Kee
    • Journal of the Korean Data and Information Science Society
    • /
    • v.7 no.2
    • /
    • pp.235-245
    • /
    • 1996
  • In this paper, we studied about several methods of testing hypothesis of correlation, specially Approximate method, Empirical method and Bootstrap method. The Approximate method is based on the Fisher's Z-transformation and the Empirical and Bootstrap methods approximate the distribution of the sample correlation coefficient by Monte Carlo simulation and Bootstrap technique, respectively. In order to compare how good these tests are, we computed powers under various alternatives. Consequently, we see that the Approximate test performs very well even if in small sample and all tests have almost the same power in large sample.

  • PDF

Comparison of Some Nonparametric Statistical Inference for Logit Model (로짓모형의 비모수적 추론의 비교)

  • 정형철;김대학
    • The Korean Journal of Applied Statistics
    • /
    • v.15 no.2
    • /
    • pp.355-366
    • /
    • 2002
  • Nonparametric statistical inference for the parameter of logit model were examined. Usually nonparametric approach is milder than parametric approach based on normal theory assumption. We compared the two nonparametric methods for legit model, the bootstrap and random permutation in the sense of coverage probability. Monte Carlo simulation is conducted for small sample cases. Empirical power of hypothesis test and coverage probability for confidence interval estimation were presented for simple and multiple legit model respectively. An example were also introduced.