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A Nonparametric Bootstrap Test and Estimation for
Change*

Jaehee KimY

Abstract

This paper deals with the problem of testing the existence of change
in mean and estimating the change-point using nonparametric bootstrap
technique. A test statistic using Gombay and Horvath (1990)’s functional
form is applied to derive a test statistic and nonparametric change-point
estimator with bootstrapping idea. Achieved significance level of the test
is calculated for the proposed test to show the evidence against the null
hypothesis. MSE and percentiles of the bootstrap change-point estimators
are given to show the distribution of the proposed estimator in simulation.

Keywords: Achieved significance level; change-point; nonparametric bootstrap test;

Ornstein-Uhlenbeck process.

1. Imtroduction

The bootstrap method, formulated by Efron and Tibshirani (1979) has been a
widely applicable method in testing problems. Bootstrap methods are simulation
methods for assessing frequency properties of statistical analyses, the simulation
model fitted to the actual data. Often the simulation involves Monte Carlo eval-
uation rather than the theoretical work.

Both bootstrap and randomization methods are the same in that rejection of
a null hypothesis occurs when the test statistic is large. However the approaches
differ in that critical values are determined by distinct resampling methods to
get the critical values from the null distribution.

The change-point problem can be considered to be one of the central prob-
lems of statistical inference, linking together statistical control theory, the theory
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of estimation and testing hypotheses, classical and Bayesian approaches, and
fixed sample and sequential procedures. The first publications of Page already
appeared in the 1950s in connection with industrial quality control. The change-
point problems was then intensively investigated in the works of Lorden (1971),
Hinkley (1970), Zacks (1983) and others. Nowadays, this field of statistical re-
search looks like a large family of mathematical problems reflecting different ap-
proaches to the main questions such as is the sample of observations homogeneous
in a statistical sense? After testing for change, if the type of change is abrupt,
the change-point estimation problem occurs. Therefore testing and estimating
are core procedures in change analysis.

Chernoff and Zacks (1964) considered a Bayes test for mean change for the
normal observations. The result of Chernoft and Zacks was later generalized by
Kander and Zacks (1966) to the case of a one-parameter exponential family, and
by Gardner (1969) to the case of the unknown amount of change.

The next important step was made by Hinkley (1970). He investigated in
detail the maximum likelihood estimates of a change-point. Also for an arbitrary
density of observed independent random variables, the asymptotic distribution
of the maximum likelihood estimate of the change-point was obtained.

As a nonparametric approach, the test statistic proposed by Pettitt (1979)
was based on Mann-Whitney statistic. Darkhovsh (1976) suggested the change-
point estimator based on Mann-Whitney statistics. Lorden (1971) considered
the sequential detection procedure from a non-Bayesian approach and proved
that the well-known CUSUM procedures of Page are asymptotically minimax.

Blattacharyya and Johnson (1968) approached the testing problem based on
sign and score functions in a non-parametric fashion. Carlstein (1988) considered
a test using the idea of pre- and post empirical cumulative distributions and their
difference. And there are nonparametric bootstrap studies for change analysis
which are introduced in the following section.

This paper is organized as follows. In section 2 a mean change-point model is
defined, bootstrap researches for change problems are surveyed and the proposed
bootstrap method is derived with its statistical properties. Section 3 presents
some numerical results in simulation with test statistics and change-point esti-
mators. Finally section 4 concludes the paper with a discussion of change-point
problem and bootstrap technique.
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2. Bootstrap Applications to Change Problems

2.1. Model of mean change

The statistical problem considered has the following form. Given a sample
X1, Xo,..., X, of § -valued random variables, we wish to test the null hypothesis
Hy that the unknown probability distribution on .S generating data belongs to a
certain class )y against the alternative class §2; with the change-point .

Let X1, Xo,..., X, be a sequence of independent random variables

Xl,XQ,...,XT ~ fid F(.’IZ),
Xri1, Xeg2,.. o, Xn ~ 1id G(z), 7€ {1,...,n— 1},
F(z) # G(),

where 7 is the change-point at which time the underlying distribution has changed
form F to G.

Typically, the estimator of the change-point is the maximizer of the (log) like-
lihood function and its distribution if F' and G are known. When the forms of
F and G are unknown, for nonparametric models, Darkhovskh (1976) and Carl-
stein (1988) obtained the consistency results of certain nonparametric estimators
of the change-point.

2.2. Survey of bootstrap change-point estimation

Hinkley and Schechtman (1987) showed the conditional bootstrap analysis
of mean-shift in Nile river flow data and compared with the parametric and
semiparametric likelihood analyses.

Boukai (1993) applied a bootstrap resampling scheme to get a nonparametric
estimator of the change-point and his estimator is based on the Kolmogorov-
Smirnov norm as proposed by Carlstein (1988). Boukai (1993)’s bootstrapping
Kolmogorov-Smirnov method is as follows.

Let X1, X5,..., X, be a sequence of independent random variables with the
cdf Gy, ;. In the context of the change-point problem, the model is assumed as for
some unknown 7 € (0,1)

GO, i < [nT],
Gn,i = 1 -
. G, i > [n7],

where G? and G' are two continuous cdfs (G° # G') and [y] denotes the greatest
integer not exceeding y. Here m = [n7] is the change-point of the sequence
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X1, Xa, ..., X, at which time the underlying distribution has changed from G°
to G1. Let n be fixed. For each k,k =1,2,...,n—1, let F, and F} denote the
empirical cdfs of the first k and the last n — k observations respectively. So that

with 7(A) being the indicator function of the set A . Fj and Fj are unbiased
estimators of Gi(z) = 1/k Zle Gi, Gi(z) = 1/(n —k) izks1 Gi respectively.
The K-S estimator of the change-point m is based on the Kolmogorov-Smirnov
norm

Dy, = ca(k)||F — Fi|

with cn(k) = (k(n — k))'/2/n and where || f|| denotes the usual supremum norm
of | f| . The estimator /i of m is taken to be the maximizer of D, (k) over the set
{1,2,...,n— 1} so that

Dy () = 151;123{_1 D, (k).
Boukai (1993) nonparametric bootstrapping estimation procedure for the change-
point is based on the following resampling scheme. Given the n observations
X ={X1,Xs,...,X,} and the observed value of 7 , the resampled observations
X* = {X{,X5,...,X}} from X are obtained in such a way that X} has a cdf
Vi
where

VIA

Fy 1 <,

That is, given x and M ,
X5 X5, X5 ~Fs and Xpyr..., XE ~ Ey,

are conditionally independent and identically distributed and the resample X*
has a change-point at . Based on the resample X* , the bootstrap estimate m*
of m is the maximizer of

Di(k) = ca(K)||Fy — Ff||  over  {L,2,...,n—1}



A Nonparametric Bootstrap Test and Estimation for Change 447
where F, F~,j are the bootstrapped versions of Fy, Fy as

Fy(z) = (X7 < =),

bl
=

1

i=k+1

=%
il

Sk

Fi(z) =

According to the procedure the bootstrap estimator m* satisfies

Dy, (") = | max Dy (k).

The empirical bootstrap cdfs F* and F* are unbiased estimators of

k n
- 1 - 1
Vi(z) = — ; Vini» Vi(x) — izzk;rl Vini

respectively.

Antoch and Huskova (1995) considered a robust M-estimators of the change-
point in general location models and studied the consistency and the limiting A
distribution of the estimator. The limiting distribution of the normalized change-
point estimator was shown to that of the location of the supremum of a two-sided
Wiener process with drift. Let {X1, X2,...,X,} be a sequence of independent
random variables such that for a unique value of m € {1,2,...,n — 1}, the fol-
lowing model holds

Oy + €4, t=1,2,...,T,
X, =
01 +e€ =0g+ 6+ ¢, t=74+1,...,n.
The random variables {e, ..., €,} are iid with zero mean and unknown variance

o? . The location parameter 6y , the change amount § as well as the change-point
m are unknown. They suggested the change-point estimator m(y), 0 <y <1/2,
defined as

m(y) = argmax {|Ux(y); k=1,2,...,n— 1},

where

0 = (g ) %~ %)
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and forn =1,2,..., X, =n! S Xi. Note that if the error terms ¢; have a
normal N(0,0?), then m(1/2) is the maximum likelihood estimator of m.
Let 8y and é be the estimators for 6y and § respectively. Define the estimated

residuals X
eF — Xt—00, t‘—‘l,,m(’}’),
T X -6 —b, t=m(y)+1,...,n

and centered residuals
n
~ * 1 *
et:et——g €, t=1,...,n
n <
=1

Take €], ..., e}, iid from the empirical distribution function of €1, ..., €, and con-
sider the bootstrap observations

*

B 0};+e{, t=1,2,...,m(y),
¢ Go+0+ef, t=m()+1,...,n.

For simplicity, consider the case with v = 1/2 . The bootstrap estimator corre-
sponding to m(1/2) is

m* = argmax {|{U; (v)|; k= 1,2,...,n— 1},

k n
n — -
f= o ) (X - X d Xp=n"1)"X;
Uk k(n—k) 1-21( i 'n) an n n g i

2.3. Proposed test for change and change-point estimation with
Bootstrap

where

We consider the one change-point model as

Op+e, t=1,2,...,7,
X =
h+e, t=17+1,...,n,

where the errors ¢; are iid from the continuous distribution 6. @ is a continuous
mean function with the unknown change-point 7 and 6; = 6y + A.
Gombay and Horvath (1990) consider the test statistic based on

Zr = 2{kg(Xr) + (n — k)g(Xn—k) — ng(Xyn)},
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where g is a given continuous function,

_ 1 k _ 1 n ~ 1 n
Xk = E E Xi, Xn—k: = n—k . E Xi and Xn = E E Xi.
=1 1=k+1 =1

Their test rejects Hy in favor of H; for large values of

Im,
(0.7 = _Im
where ¢(?) is the second derivative of g and for suitably chosen ¢ and j. They
proved that under Hp , for all 0 < A\; <1— X3 <1 as n — oo, Z(m,ms)/0? —
supg<s<p [V(s)|? in distribution where my = nA;, ma = n(l - X), A =
(1/2)log {(1 — A1)(1 — A2)/(MA2)} and {V(s),—00 < s < o0} be an Ornstein-
Uhlenbeck process, i.e. a Gaussian process with mean zero and covariance exp(—|t
—sl|) . Or the limiting distribution can be expressed as
max Zx—o® sup (W) —tW(Q)}?/{t(1 - t)}
my<k<mg A1 <k<1—\,

in distribution.

We propose a bootstrap test of Gombay and Horvath’s functional form. Since
their test is derived from the maximum likelihood ratio test, it is suitable for any

distribution.
Nonparametric bootstrap estimation procedure is in the followings.

(i) Let n be fixed. Foreach k, k =1,2,...,n— 1.

For the sample {X1, X2,..., Xy}, calculate the test statistic with the boot-
strapped sample and get the estimators 7, 6y, A.

(ii) Let fo and A be the estimators for fo and § respectively. Define the esti-
mated residuals

S X, — by, t=1,... %
TN X =0 A, t=7+1,...,n

and centered residuals
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Take e}, ..., e} iid from the empirical distribution function of €, ..., &, and
consider the bootstrap observations

X — bo + €f, t=1,2,...,7,
P Y b+ A+er, t=F+1,...,n

(iii) The bootstrap estimator corresponding to Zj is
Zp = 2 {kg(X3) + (n — k)g(X;_x) —ng(X7)},
where g is a given continuous function,
1

_ 1 k _ n B 1 n
Xk:E;X;, n_k:n—ki:;i_lxi and Xn:E;X:

Calculate the following test statistic as

- Zg
Z(Za]) _iinrr?i(jg(z)(e)’

where g2 is the second derivative of g and for suitably chosen ¢ and j.

(iv) The bootstrap change-point estimate is obtained as

7* = argmax {|Z(3,5)*], L <i< j < n}.

With B times repetitions, the bootstrap critical values are obtained from
the bootstrap distribution. Therefore the bootstrap test can be done with the
bootstrap critical values.

The bootstrap change-point estimate can be obtained as the mean of the
bootstrap estimates

B
~ = 1 ~
{; = ’T* = E T*
i=1
and the bootstrap variance is estimated as
1 B
Var = ——Y (#*—#")%.
512 b")

=1
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Having observed Z, the achieved significance level (ASL) of the test is defined to
be the probability of observing at least that large a value when the null hypothesis

is true,
ASL=P(Z > 2).

The smaller the value of ASL, the stronger is the evidence against Hy . The
quantity Z is fixed at its observed value, the random variable Z has the null
hypothesis distribution, the distribution of Z if Hy is true.

The following theorems show the asymptotic properties of the proposed esti-
mators.

Lemma 2.1 With the bootstrapped sample {X7,X3,..., X}
Xt —Xe, X:— Xu X;— X, inprobability.

Proof: For k < 7, we have

k
S 1
E(Xy) = EZE)Q:HO :

1=1
Also
_ 1 n 1 T n
E(Xn) = n_k{ > EXi}zm{ > EXi+ ), EXZ}
i=k+1 i=k+1 =741
1
= {(n—k)8p + (n —T)A}
n-—T
= Oy + - kA.

Let a = >0 ;1 I(X] € {X1,...,X;}) be the number of X}’s in {X1,...,X,},
the sample before the change-point. Then

B (%) = — {,;EX:} = L {E(a-00) + El(n — £~ a)(6o + A))
1=k+
1
= ——{(n- k) + (n—1)A}
n—k

=0y + A.
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Since

E(a):E(Z I(X{‘E{Xl,...,XT})) = X(n—k)=n-—71

i=k+1

E(X,) = %{ém} - {Z;E)H 3 EX,}

1=7+1

= 2 {rbo + (n =) (00 + )}

P n— TA,
n
E(X}) = 1 i EX} 3 = lE[(/c +a)fo + (n—k —a)(6y + A)]
n n — 1 n
1=
=6y + n- TA
Therefore X; — X, X’;_k — Xneks X,’; — X, in probability. O

Theorem 2.1 With the bootstrapped sample {X{,X5,..., X}, Zf — Zy in
probability.

Proof: From Lemma 2.1 and taking a continuous function g,

9(Xp) — 9(Xk), 9(Xp_p) — g(X'n_k), 9(X7) — g(X'n) in probability.
O

The following theorem show that the limiting distribution of Z}, is the limiting
distribution of Zj, .

Theorem 2.2 The limiting distribution can be expressed as

max Z; —o? sup {W(t)—tW(1)}?/t(1 —t).
m1<kSmy A1 <k<1-)Xg
in distribution under Hg where 0 < Ap <1 - Xy < 1, my = n\ and my =
n(l - /\2).

Proof: From the previous result, Z; — Z; in probability therefore Z} —
Zj; in distribution. Since maxX,,, <k<m, £k — MaXym, <k<m, Zj, the result follows.
a
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3. Simulation

A random sample X3, X5, ..., X, are generated from the normal distribution
with the mean 0 and the variance 02 = 1. Suppose that for a unique value of
T€{1,2,...,n— 1}, the following mean level change model holds

By + €4, t=1,2,...,T,
X; =
Oh+e=0+A+e, t=7+1,...,n,

where y = 0 without loss of generality. The amount of change A = 0.5, 1, 1.5, the
sample size n = 50 and the location of change at 7/n = 0.3, 0.5, 0.8 are considered.
The bootstrap repetition B = 1,000 were used in this simulation. The proposed
bootstrap test of Gombay and Horvath’s functional form with g(t) = 2 is consid-
ered in the simulation. Figure 3.1 shows the histogram and the smoothed density
of the test statistic values under Hy, which gives a skewed distribution. Figure
3.2 shows the histogram and the smoothed density of bootstrapped values of the
change-point when there is no change. Figure 3.3 shows the histogram of the
test statistic values under H; with A = 1,7 = 25. The peak in Figure 3.3 occurs
around the true change-point. Therefore the bootstrap distribution gives infor-
mation about the location of the change-point. Figure 3.4 shows the histogram of
bootstrapped values of the change-point estimator under Ay with A = 1,7 = 25.
While Figure 3.2 seems a uniform distribution except the boundaries, Figure 3.4
shows the location of the change-point. Table 3.1 shows that the sample mean
(SM), the standard deviation (SD), upper percentiles and ASL of bootstrap test
statistics and change-point estimators when there is one change-point in mean.
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Figure 3.1: Histogram and Estimated Density of Bootstrapped Test Statistics
Under Hy with no Change in B = 1,000 Repetitions.
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Table 3.1: Simulation Results of the proposed Bootstrap statistics with upper per-
centiles, mean(SM), standard deviation(SD) and achieved significance level(ASL)
with the Sample Size n = 50 in B = 1,000 Repetitions

AT test 5% 10% 90% 95% change-point esti- [ 5% 10% 90% 95%
mation
0.5[15| SM 9.3400 | 19.5621 16.7364 3.2775 2.3948 | SM 22.36 36.08 32.76 13.36 11.48
SD 7.5243 MSE 151.037
ASL=0.2354
25 SM 9.5398 | 19.5692 16.6553 3.5496 2.6421 | SM  25.52 37.34 34.80 15.94 13.12
SD_7.2516 I MSE 83.124 |
ASL=0.2426
30| SM 9.7969 | 20.0284 17.2748 3.6066 2.6567 | SM 26.97 38.28 35.96 17.12 13.84
SD 7.2154 | MSE 87.529 l
ASL=0.2327
1.0 15| SM 16.0878 | 30.6535 26.6530 6.9520 5.3369 | SM 18.15 30.52 25.68 12.68 11.14
SD  5.6955 | MSE 57.886 l
ASL=0.0535
25| SM 18.7895 | 34.8241 30.4529 8.5191 6.6650 | SM  24.53 33.74 30.52 18.60 15.66
SD_ 5.1072 | MSE 39.369 ]
ASL=0.0468
30 SM 19.8511 | 36.2495 31.9772 9.2140 7.1895 | SM 28.66 36.10 33.76 23.00 19.02
SD 4.8599 I MSE 40.830 I
ASL=0.0187
1.5 |15 | SM 28.7718 | 51.0236 45.0466 14.2427 11.3064 | SM 16.72 24.74 21.10 13.10 11.84
SD_ 4.1532 [ MSE 29.596 ]
ASL=0.0139
25 [ SM 33.7326 | 57.9897 51.8110 17.5264 14.2282 | SM 25.11 31.48 28.86 21.36 18.04
SD 3.7342 l MSE 18.036 l
ASL=0.003
30 | SM 33.3680 | 58.0334 51.7005 17.1525 13.9117 | SM 29.42 34.98 32.98 25.68 22.74
SD  3.7398 J MSE 19.072 |
ASL=0.003

Table 3.1 gives that the proposed bootstrap test rejects Hy when the amount
of change A = 1.0, 1.5. However, when A = 0.5, the proposed test does not
reject for no change since the small change can not be captured by bootstrap
resampling due to possible perturbation. The right part of Table 3.1 shows that
the upper percentiles of the proposed bootstrap change-point estimator providing
confidence intervals and that the change-point estimation works better when the
change-point occurs in the middle of the data sequence.

4. Conclusion

Bootstrap methods are widely applicable method by distinct resampling tech-
nique. We suggested a bootstrap test for change and a bootstrap change-point
estimator using the Gombay and Horvath’s functional form of statistics. The
proposed method works better when the change-point occurs at the middle of
the data sequence than elsewhere. Other functional form of change statistics can
be applied with the bootstrap method. For example, contamination of a sampled
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distribution can degrade the performance of a statistical estimator in which case a
version of the weighted bootstrap method can be developed with each data value
being assigned a weight according to an assessment of its influence on dispersion.
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