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Abstract
We consider a jump diffusion process for high-frequency financial asset data. We apply the stationary boot-

strapping to construct a bootstrap test for jumps. First-order asymptotic validity is established for the stationary
bootstrapping of the jump ratio test under the null hypothesis of no jump. Consistency of the stationary bootstrap
test is proved under the alternative of jumps. A Monte-Carlo experiment shows the advantage of a stationary
bootstrapping test over the test based on the normal asymptotic theory. The proposed bootstrap test is applied to
construct continuous-jump decomposition of the daily realized variance of the KOSPI for the year 2008 of the
world-wide financial crisis.

Keywords: stationary bootstrap, jump diffusion process, ratio test, realized variation, realized
bipower variation

1. Introduction

Jump is an important feature of financial asset processes as it causes sudden changes for asset pro-
cesses. Financial markets generate significant discontinuities in financial variables; therefore, jump
diffusion processes are considered more appropriate empirical models for financial data than Ito pro-
cesses whose volatility parts consist only of generalized Wiener processes. Proper characterization of
the jump feature (if any) of a financial asset is important for its volatility analysis which is crucial for
asset pricing, risk management and portfolio allocation.

The recent availability of high frequency financial asset data has resulted in considerable studies
on tests and estimations regarding jumps using high frequency data. Tests for jumps were proposed by
Aı̈t-Sahalia (2002), Carr and Wu (2003), Huang and Tauchen (2005), Barndorff- Nielsen and Shep-
hard (2006), and Lee and Mykland (2008). Barndorff-Nielsen and Shephard (2004, 2006) addressed
realized bipower variation to estimate the contribution of jumps to the variation of assets and to form
robust tests, and derived asymptotic distribution theory for nonparametric tests. More recently, Aı̈t-
Sahalia and Jacod (2009) proposed a test to determine whether jumps are present in asset returns or
other discrete samples processes. Aı̈t-Sahalia et al. (2012) dealt with testing for jumps in noisy high
frequency data. Podolskij and Vetter (2009), Jacod and Reiss (2014), Jacod and Todorov (2014), and
Jing et al. (2014) discussed efficient estimations of integrated volatility in the presence of jumps.

Bootstrap method is attractive to approximate the sampling distributions of test statistics or es-
timators. For statistical inference for financial assets based on high frequency data, some papers
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reported better performances of statistical methods by bootstrap applications than by central limit the-
orem applications. Gonçalves and Meddahi (2009) and Dovonon et al. (2013) considered the i.i.d.
bootstrap and the wild bootstrap for realized volatility and for realized regression coefficients, covari-
ances, and correlations of multivariate high frequency returns, respectively. Hwang and Shin (2013a,
2013b) applied stationary bootstrapping to the realized volatility with and without market microstruc-
tural noise. As for the bootstrap jump tests, using the asymptotic theory of Barndorff-Nielsen and
Shephard (2006), Hwang and Shin (2014) considered the i.i.d. bootstrap to construct a bootstrap test
for jumps and Dovonon et al. (2014) applied the local Gaussian bootstrap to construct a bootstrap
jump test.

We note that the observed log return series are not independent because of conditional heterosceda-
sticity. The dependent structure of a sample is better carried into a bootstrap sample by a block
bootstrap method than by an i.i.d. bootstrap method. We apply stationary bootstrapping for jump
diffusion processes (the most widely used block bootstrap method) to a test for jump via bootstrap
realized quadratic and bipower variations that produce a stationary bootstrap version of the jump test
by Barndorff-Nielsen and Shephard (2006) and the i.i.d bootstrap test of Hwang and Shin (2014). The
first-order asymptotic validity of the distribution of the stationary bootstrap test is established under
the null of no jump and consistency of the stationary bootstrap test is proved under the alternative of
jumps, which is the main result of this paper.

The remaining of the paper is organized as follows. In Section 2, we describe the setup and
the existing theory used in this work. In Section 3, the stationary bootstrap procedure is applied to
construct a bootstrap jump test as well as to establish an asymptotic validity. In Section 4, a Monte-
Carlo experiment compares the bootstrap test and the normal test based on central limit theorem. In
Section 5, the proposed bootstrap test is applied to the daily realized variance of the KOSPI for the
year 2008. In Section 6, a concluding remark is presented. In Section 7, technical results and proofs
are given.

2. Preliminary setup

The preliminary setup reviews the jump test by Barndorff-Nielsen and Shephard (2006). A large part
of this section is reproduced from Hwang and Shin (2014). We consider the log-price process {Yt :
t ≥ 0} of an asset, which is assumed to follow a jump diffusion process in a Brownian semimartingale
plus jump:

Yt =

∫ t

0
asds +

∫ t

0
σsdWs +

Nt∑
j=1

c j, (2.1)

where at is the drift term, σt is a volatility process, Wt is the standard Brownian motion, Nt is a simple
counting process, and c j, j = 1, 2, . . . , are real-valued random variables. In this work we adopt the
setup and notations of Barndorff-Nielsen and Shephard (2006) and Hwang and Shin (2014).

We are interested in testing the presence of jump based on a high frequency data. Without loss
of generality, we assume the time interval for the sample to be one unit interval [0, 1]. The last term
in (2.1) is due to jump. The absence of the jump component corresponds to c j = 0, for all j in the
interval [0, 1].

The quadratic variation (QV) of Yt over [0, 1] is

QV := p lim
n→∞

n−1∑
j=1

(Yt j+1 − Yt j )
2
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for any sequence of partitions 0 = t0 < t1 < · · · < tn = 1 with sup j |t j+1 − t j| → 0 as n → ∞. The QV

is decomposed into the continuous part
∫ 1

0 σ2
sds and purely discontinuous part

∑
0≤u≤1 ∆Y2

u =
∑N1

j=1 c2
j

where ∆Yu = Yu − Yu− are the jumps in Y . Then we have

QV =
∫ 1

0
σ2

sds +
N1∑
j=1

c2
j .

The two terms in the QV,
∫ 1

0 σ2
sds and

∑N1
j=1 c2

j , are estimated from a discrete sample of Y with a
sampling interval h ∈ (0, 1). Let n = ⌊1/h⌋, integer part of 1/h. Let ri = Yih − Y(i−1)h be the log-return
for the period [(i − 1)h, ih] for i = 1, 2, . . . , n.

It is well-known that the realized quadratic variation (RQV) defined by Q̂h :=
∑n

i=1 r2
i is a consis-

tent estimator of QV. According to Barndorff-Nielsen and Shephard (2006), if a = 0 and σ is indepen-
dent of W, then the (1, 1)-order bipower variation (BV) of Y defined as BV := p limn→∞

∑n
i=2 |ri−1||ri|

is given by

BV = µ2
1

∫ 1

0
σ2

s ds,

where µ1 = E|Z| =
√

2/π and Z ∼ N(0, 1), and hence, the realized bipower variation (RBV), defined
by B̂h :=

∑n
i=2 |ri−1||ri|, satisfies

µ−2
1 B̂h

p
−→

∫ 1

0
σ2

s ds.

Consequently, Q̂h − µ−2
1 B̂h is a consistent estimator of purely discontinuous component

∑N1
j=1 c2

j

of the QV. Deviation of the ratio µ−2
1 B̂h/Q̂h below from 1 is a measure for the jump. The following

Proposition 1 of Barndorff-Nielsen and Shephard (2006), which is given under assumptions (A1) and
(A2), characterizes the null asymptotic distribution of the ratio:

(A1) the volatility process σ2 is pathwise bounded away from zero.

(A2) the joint process (a, σ) is independent of the Brownian motion W.

Proposition 1. (Barndorff-Nielsen and Shephard, 2006) Consider model (2.1) with no jump
component, i.e.,

∑N1
j=1 c2

j = 0, and assume (A1) and (A2).
Then as h→ 0, we have

H :=
h−

1
2

(
µ−2

1 B̂h/Q̂h − 1
)

√
ϑ
∫ 1

0 σ4
s ds

/ (∫ 1
0 σ2

s ds
)2

d−→ N(0, 1),

where ϑ = (π2/4) + π − 5.

Since the distribution depends on the unknown integrated quarticity
∫ 1

0 σ4
udu, using the RQV,

Ûh = h−1 ∑n
i=4 |riri−1ri−2ri−3|, as a consistent estimator of µ4

1

∫ 1
0 σ4

s ds, Barndorff-Nielsen and Shephard
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(2006) proposed the following test

Ĥ :=
h−

1
2

(
µ−2

1 B̂h/Q̂h − 1
)

√
ϑÛh/B̂2

h

,

which is called the ratio test. The test Ĥ rejects the null hypothesis of no jump if negatively large.
According to Proposition 1, critical value of Ĥ can be approximated by quantiles of the standard
normal distribution.

3. Consistency of the stationary bootstrap jump test

In this section, we describe the stationary bootstrap (SB) procedure and the main results. A SB ratio
test is constructed via SB realized quadratic variation (SB-RQV) and SB realized bipower variation
(SB-RBV), and its first order asymptotic validity is established.

The SB method originally proposed by Politis and Romano (1994) is characterized by resam-
pling blocks of geometrically distributed random length and the pseudo time series generated by the
bootstrapping are stationary, conditionally on the original data.

SB has been actively studied by authors as a nonparametric inference technique in statistics and
econometric financial time series analysis. See Hwang and Shin (2013a, 2013b), Shin and Hwang
(2013) and references therein.

3.1. Stationary bootstrap sample

Let r1, . . . , rn be observed. First we define a new time series {rni : i ≥ 1} by a periodic extension of
the observed data set as follows. For each i ≥ 1, define rni := r j where j is such that i = qn + j
for some q. The sequence {rni : i ≥ 1} is obtained by wrapping the data r1, . . . , rn around a circle,
and relabelling them as rn1, rn2, . . . . Next, for a positive integer ℓ, define the blocks B(i, ℓ), i ≥ 1 as
B(i, ℓ) = {rni, . . . , rn(i+ℓ−1)} consisting of ℓ observations starting from rni. Bootstrap observations under
the stationary bootstrap method are obtained by selecting a random number of blocks from collection
{B(i, ℓ) : i ≥ 1, ℓ ≥ 1}. To do this, we generate random variables I1, . . . , In and L1, . . . , Ln as follows:
(i) I1, . . . , In are i.i.d. discrete uniform on {1, . . . , n} : P(I1 = i) = 1/n, for i = 1, . . . , n, (ii) L1, . . . , Ln

are i.i.d. random variables having the geometric distribution with a parameter p ∈ (0, 1) : P(L1 = ℓ) =
p(1 − p)ℓ−1 for ℓ = 1, 2, . . . , where p = pn depends on the sample size n, and (iii) the collections
{I1, . . . , In} and {L1, . . . , Ln} are independent.

For notational simplicity, we suppress dependence of the variables I1, . . . , In, L1, . . . , Ln and of the
parameter p on n. We assume that p = pn goes to 0 as n → ∞. Under the stationary bootstrap the
block length variables L1, . . . , Ln are random and the expected block length EL1 is p−1, which tends to
∞ as n→ ∞. Now, a pseudo-time series r∗1, . . . , r

∗
n is generated in the following way. Let τ = inf{k ≥

1 : L1 + · · · + Lk ≥ n}. Then select τ blocks B(I1, L1), . . . , B(Iτ, Lτ). Note that there are L1 + · · · + Lτ
elements in the resampled blocks B(I1, L1), . . . , B(Iτ, Lτ). Arranging these elements in a series and
deleting the last L1 + · · ·+ Lτ − n elements, we get the bootstrap observations r∗1, . . . , r

∗
n. Conditionally

on {r1, . . . , rn}, the process {r∗i : i = 1, 2, . . .} is stationary. In the following, P∗, E∗,Var∗ denote the
conditional probability, the conditional expectation, and the conditional variance, respectively, given
r1, . . . , rn.
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3.2. Asymptotic results

The SB-RQV, SB-RBV, and SB realized quadpower variation are respectively given by

Q̂∗h :=
n∑

i=1

r∗ 2
i , B̂∗h :=

n∑
i=2

∣∣∣r∗i−1

∣∣∣ ∣∣∣r∗i ∣∣∣ , Û∗h := h−1
n∑

i=4

∣∣∣r∗i r∗i−1r∗i−2r∗i−3

∣∣∣ .
The next theorems establish consistency of the SB distribution of the ratio test. We make the following
conditions, which are presented in earlier works of the stationary bootstrap.

(A3) Assume E|ri|8+4δ < ∞, for some δ > 0.

Note that the condition E|ri|8+4δ < ∞ implies E|riri+1|4+2δ < ∞ by Hölder inequality. These
two finite moment conditions are used to show the limiting of conditional variance of the stationary
bootstrap estimators. Consistency of Q̂∗h can be seen in Hwang and Shin (2013a, 2013b).

Theorem 1. We consider model (2.1) with no jump component and assume (A1), (A2) and (A3). If
parameter p of geometric distribution of random block length in the stationary bootstrap procedure
is chosen so that h/p2 → 0 as h→ 0. Then we have

(i) sup
x∈R

∣∣∣∣∣∣∣∣∣P∗
h−

1
2

[
µ−2

1 B̂∗h/Q̂
∗
h − µ−2

1 E∗
(
B̂∗h

)
/E∗

(
Q̂∗h

)]
√

h−1Var∗
(
µ−2

1 B̂∗h/Q̂
∗
h

) ≤ x

 − P

 h−
1
2

[
µ−2

1 B̂h/Q̂h − 1
]

√
h−1Var

(
µ−2

1 B̂h/Q̂h

) ≤ x


∣∣∣∣∣∣∣∣∣

p
−→ 0.

(ii) sup
x∈R

∣∣∣∣∣∣∣∣∣P∗
h−

1
2

[
µ−2

1 B̂∗h/Q̂
∗
h − µ−2

1 E∗
(
B̂∗h

)
/E∗

(
Q̂∗h

)]
√
ϑÛ∗h/

(
B̂∗h

)2
≤ x

 − P

h−1/2
[
µ−2

1 B̂h/Q̂h − 1
]

√
ϑÛh/

(
B̂h

)2
≤ x


∣∣∣∣∣∣∣∣∣

p
−→ 0.

Theorem 1(ii) yields approximation of critical values of the ratio test by quantiles of the bootstrap
distribution. Bootstrap values of B̂∗(k)

h , Q̂∗(k)
h and Û∗(k)

h , k = 1, . . . ,m, are simulated. Let B̄∗h, Q̄∗h be the
averages of m values of B̂∗(k)

h , Q̂∗(k)
h , k = 1, . . . ,m, respectively. Given level α ∈ (0, 1), the critical value

H∗(α) of Ĥ is the empirical α-th quantile of the m bootstrap values of

h−
1
2

[
µ−2

1 B̂∗(k)
h /Q̂∗(k)

h − µ−2
1 B̄∗h/Q̄

∗
h

]
√
ϑÛ∗(k)

h /
(
B̂∗(k)

h

)2
, k = 1, . . . ,m. (3.1)

The bootstrap test of Ĥ rejects the null hypothesis of no jump if Ĥ ≤ H∗(α). The following theo-
rem establishes asymptotic validity of the test under the alternative of jumps, i.e., consistency of the
stationary bootstrap test.

Theorem 2. We consider model (2.1) with positive jump component
∑N1

j=1 c2
j > 0 and assume (A1),

(A2) and (A3). If h/p2 → 0 as h→ 0, then for α ∈ (0, 1), we have

P
(
Ĥ ≤ H∗(α)

)
→ 1.

Note that Proposition 1, which was established by Barndorff-Nielsen and Shephard (2006), as-
sumed the no-leverage condition of (A2), and also our asymptotic bootstrap results in Theorems 1
and 2 are given under the same condition. Extension of Proposition 1 and the subsequent stationary
bootstrap results to the leverage cases would be a good topic for a future study.
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Table 1: Rejection rates (%) the normal test (N) and the stationary bootstrap test (B)

n Jump0(0) Jump1(.2) Jump1(.4) Jump2(.4)
N B N B N B N B

12 18.3 6.8 22.7 10.1 28.4 14.8 25.4 12.8
GARCH(1, 1) 48 9.9 5.5 24.4 16.1 37.6 27.3 37.0 25.8

diffusion 288 6.8 5.0 46.6 25.5 59.9 40.0 70.2 48.3
1152 6.1 4.9 62.3 25.0 72.6 40.0 86.3 55.2

12 18.3 6.9 22.7 10.0 28.5 14.9 25.3 12.8
log-normal 48 9.9 5.4 24.4 16.0 37.6 27.3 37.0 25.8
diffusion 288 6.8 5.1 46.6 25.5 59.9 40.1 70.2 48.4

1152 6.1 4.9 62.3 25.0 72.6 39.9 86.3 55.2

4. A Monte Carlo study

Finite sample size and power of the stationary bootstrap ratio test (B) are compared with those of
the normal ratio test (N). We consider the data generating process Yt =

∫ t
0 σsdW1s +

∑Nt
j=1 c j where

W1t is a standard Brownian motion. For the volatility process, we consider two models: dσ2
t =

0.04(0.64 − σ2
t )dt + 0.14σ2

t dW2t; d logσ2
t = −0.014(0.84 + logσ2

t )dt + 0.11dW2t which are called
GARCH(1, 1) diffusion; log-normal diffusion, respectively, where W2t is a standard Brownian motion
independent of W1t. These volatility processes are found in the empirical studies of Bollerslev and
Zhou (2002), Andersen et al. (2002), Gonçalves and Meddahi (2009), and Hwang and Shin (2013b,
2014).

We consider n = 12, 48, 288 and 1152 which correspond to h = 2 hour, 30 minute, 5 minute, and
1.25 minute, respectively. The discrete observations Yi/n, i = 1, . . . , n are simulated by using normal
errors W1 i/n, W2 i/n, i = 1, . . . , n generated by RNNOA, a FORTRAN subroutine in IMSL with initial
volatilities σ2

0 = 0.64, logσ2
0 = −0.84 for GARCH(1, 1) and log-normal diffusion, respectively,

The jump part is specified so that no jump occurs; one jump of size c1 occurs at time K1 distributed
uniformly over the interval {1, . . . , n} where c1 ∼ N(0, λIV), λ = 0.2, 0.4 and IV =

∫ 1
0 σ2

sds is the
integrated variance; or two independent jumps of sizes c1, c2 occur at times K1,K2 independently
distributed uniformly over the interval {1, . . . , n} where c1, c2 ∼ N(0, λIV), λ = 0.2. These jump cases
are denoted by Jump0(.0), Jump1(.2), Jump1(.4), Jump2(.4), respectively. The subscript denotes the
number of jumps and the numbers in the parenthesis denote E[

∑
i c2

i ]/IV, the ratio of the expected
jump component over the continuous component.

Table 1 reports empirical rejection probabilities of level 5% tests for which m = 1000 is used for
the number of bootstrap replications and p = 0.4(n/100)−1/3 is used for the block length parameter.
The rejection probabilities are computed using 10,000 independent replications. For each replication,
the continuous component IV is approximated by

∑n
i=1 r2

i with n = 100,000 for the jump-free process
Yt =

∫ t
0 σsdW1s. We see that size and power performances of the tests under the GARCH(1, 1)

diffusion are very similar to those under the log-normal diffusion.
The values in blocks under the column Jump0(0) are sizes. We see very stable size for the station-

ary bootstrap test B but some over size for the normal test N. Relative size advantage of the stationary
bootstrap test B over the normal test N is more conspicuous for smaller n: for n = 12, the test N has
severe over-size over 18% while the test B has size 6.8% or 6.9%; for n = 48, N has still unsatisfactory
size values around 9.9% while the test B has size 5.5% or 5.4%. As n increases to 288 and 1152, N
still has over-size around 6.1% while size of B is 5.1% or 4.9%.

The values in blocks under the column Jump1(.2), Jump1(.4), Jump2(.4) are powers, showing
that both tests N and B have powers. Powers of both tests increase as n increases or E[

∑
i c2

i ]/IV,
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Figure 1: Daily realized variances (RV) and their continuous-jump decompositions (C, J) of the KOSPI for Jan
1, 2008–Dec 31, 2008, multiplied by 1,000.

Table 2: Continuous-jump decomposition of realized variance

Date Ĥ H∗(0.05) Jump? 1000 × Q̂h 1000 × µ−2
1 B̂h 1000 ×Ch 1000 × Jh

2008/10/27 −2.201 −2.124 yes 2.913 2.548 2.548 .365
2008/10/28 −.557 −4.556 no 1.364 1.329 1.364 .000

the number in the parenthesis, increases. The normal test N has seemingly higher power than the
stationary bootstrap test B. The seemingly higher power of the normal test in large part due to the
over-size of the normal test. The seemingly higher power of N over B will then be substantially
reduced if the over-size of the normal test N is adjusted.

5. Example

The proposed method is applied to a continuous jump (CJ) decomposition of realized variance of the
KOSPI for the period Jan 1, 2008–Dec 31, 2008, of the world-wide financial crisis, which is display
in the left part of Figure 1. Let a working day in Jan 1, 2008–Dec 31, 2008, be given. Let Q̂h be
the 1 minute realized variation of the day. The stationary bootstrap test H is applied to determine
significance of the jump component. Recall that the QV is decomposed into the continuous part∫ 1

0 σ2
sds and purely discontinuous part

∑N1
j=1 c2

j so that QV =
∫ 1

0 σ2
sds +

∑N1
j=1 c2

j and that the realized
variance Q̂h is a consistent estimator of QV.

The latter term
∑N1

j=1 c2
j is the jump component of the QV which is consistently estimated by

(Q̂h − µ−2
1 B̂h) if this term is statistically significant. Therefore, the jump component of Q̂h is Jh =

(Q̂h − µ−2
1 B̂h)I(Ĥ < H∗(α)), where I(A) is the indicator function of an event A and H∗(α) is the

bootstrap critical value of level α. The continuous component of Q̂h is Ch = Q̂h − Jh. We then have
the CJ-decomposition Q̂h = Ch + Jh of Q̂h.

Time series plots of Ch, Jh are displayed in the right part of Figure 1. Values of Ch, Jh are given in
Table 2 for two selected days. For day Oct 27, 2008, Ĥ = −2.201 is significant at 5% level because it
is smaller than the stationary bootstrap critical value H∗(0.05) = −1.985 which is computed by 10,000
bootstrap replications. Therefore, Jh = Q̂h − µ−2

1 B̂h = 0.365 × 10−3 and Ch = µ
−2
1 B̂h = 2.548 × 10−3.

For day Oct 28, 2008, Ĥ = −0.557 > H∗(0.05) = −4.213 is not significant at 5% level, giving us
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Jh = 0 and Ch = Q̂h = 1.364 × 10−3.

6. Conclusion

This paper applied stationary bootstrapping to the ratio jump test of Barndorff-Nielsen and Shephard
(2006) based on high-frequency data for a jump diffusion process. Asymptotic null validity of the
stationary bootstrap ratio jump test was proved by establishing the bivariate normality of the stationary
bootstrapping realized quadratic variation and stationary bootstrapping realized bipower variation as
well as by using a delta method for the ratio. Consistency of the stationary bootstrap ratio jump
test was proved under the alternative of jumps. A Monte Carlo experiment shows that the proposed
bootstrap test has a more stable size than the normal test based on the central limit theorem. The
proposed bootstrap test is illustrated by continuous-jump decomposition of the daily realized variance
of the KOSPI for the year 2008.

7. Proofs

In the proofs, Xn
p∗
−→ X and Xn

d∗−→ X mean that Xn converges to X in probability and in distribution,
conditionally given r1, . . . , rn, respectively.

According to Theorem 3 of Barndorff-Nielsen and Shephard (2006), we have

h−
1
2

[
Q̂h −

∫ 1

0
σ2

sds, µ−2
1 B̂h − µ−2

1

∫ 1

0
σ2

sds
]′

d−→ N(0,Σ), (7.1)

where

Σ =

(
σ2

1 σ12
σ12 σ2

2

)
=

 2
∫ 1

0 σ4
sds, 2

∫ 1
0 σ4

sds

2
∫ 1

0 σ4
sds,

(
π2

4 + π − 3
) ∫ 1

0 σ4
sds

 . (7.2)

Proposition 1 follows from the result in (7.1) above.
We first present the (bivariate) normalities of two SB estimators Q̂∗h and B̂∗h in the following three

theorems below.

Theorem 3. We consider model (2.1) with no jump component and assume (A1), (A2) and (A3). As
h→ 0, we have

h−
1
2

[
Q̂∗h − E∗

(
Q̂∗h

)] d∗−→ N
(
0, σ2

1

)
,

where σ2
1 = 2

∫ 1
0 σ4

sds.

Theorem 4. We consider model (2.1) with no jump component and assume (A1), (A2) and (A3). As
h→ 0, we have

h−
1
2 µ−2

1

[
B̂∗h − E∗

(
B̂∗h

)] d∗−→ N
(
0, σ2

2

)
,

where σ2
2 = (ϑ + 2)

∫ 1
0 σ4

sds.
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Theorem 5. We consider model (2.1) with no jump component and assume (A1), (A2) and (A3). As
h→ 0, we have

h−
1
2

[
Q̂∗h − E∗

(
Q̂∗h

)
, µ−2

1 B̂∗h − µ−2
1 E∗

(
B̂∗h

)]′ d∗−→ N(0,Σ),

where Σ is given in (7.2).

The proof of Theorem 3 is given in Hwang and Shin (2013b). Once we have the result of Theorem
4, by the Cramér-Wold device, the bivariate normality result in Theorem 5 is obvious. Thus here we
prove Theorem 4. The proof of our main theory in Theorem 1 follows from Theorem 5.

Proof of Theorem 4: Let

V∗τ = µ
−2
1

sτ−1∑
i=1

∣∣∣r∗i ∣∣∣ ∣∣∣r∗i+1

∣∣∣ and Uτ = hµ−2
1

τ∑
j=1

TI j,L j ,

where sτ = L1 + · · · + Lτ and Ti,ℓ = h−1 ∑i+ℓ−1
j=i |rn j||rn( j+1)|.

In order to prove Theorem 4, we will show the following five asymptotic results in Lemmas 1–5
below:

h−
1
2
∣∣∣V∗τ − Uτ

∣∣∣ p∗
−→ 0, h−

1
2

(
V∗τ − µ−2

1 B̂∗h
) p∗
−→ 0,

h−
1
2

(
Uτ − µ−2

1 B̂∗h
) d∗−→ N

(
0, (ϑ + 2)

∫ t

0
σ4

sds
)
,

and

h−
1
2

(
E∗

(
B̂∗h

)
− B̂h

) p
−→ 0,

∣∣∣∣Var∗
(
h−

1
2 µ−2

1 B̂∗h
)
− Var

(
h−

1
2 µ−2

1 B̂h

)∣∣∣∣ p
−→ 0.

The following five lemmas are given under the same assumptions as in Theorem 4.

Lemma 1.

h−
1
2
∣∣∣V∗τ − Uτ

∣∣∣ p∗
−→ 0.

Proof of Lemma 1: We observe that, denoting Iτ+1 = 0,

h−
1
2
∣∣∣V∗τ − Uτ

∣∣∣ = h−
1
2 µ−2

1

∣∣∣∣∣∣∣∣
sτ−1∑
i=1

∣∣∣r∗i ∣∣∣ ∣∣∣r∗i+1

∣∣∣ − τ∑
j=1

I j+L j−1∑
i=I j

|rni|
∣∣∣rn(i+1)

∣∣∣
∣∣∣∣∣∣∣∣

= h−
1
2 µ−2

1

∣∣∣∣∣∣∣∣
τ∑

j=1

I j+L j−2∑
i=I j

|rni|
∣∣∣rn(i+1)

∣∣∣ + ∣∣∣rn(I j+L j−1)
∣∣∣ ∣∣∣rnI j+1

∣∣∣ − τ∑
j=1

I j+L j−1∑
i=I j

|rni|
∣∣∣rn(i+1)

∣∣∣
∣∣∣∣∣∣∣∣

≤ h−
1
2 µ−2

1

τ∑
j=1

∣∣∣∣∣ ∣∣∣rn(I j+L j−1)
∣∣∣ · ∣∣∣∣ ∣∣∣rnI j+1

∣∣∣ − ∣∣∣rn(I j+L j)
∣∣∣ ∣∣∣∣∣∣∣∣∣.

Let Y j = |rn(I j+L j−1)| ·
∣∣∣|rnI j+1 | − |rn(I j+L j)|

∣∣∣. Then {Y j : j = 1, 2, . . . } is a sequence of i.i.d. random
variables since {(I j, L j) : j = 1, 2, . . . } are i.i.d. Note that τ = np + Op(

√
np) by Politis and Romano



172 Eunju Hwang, Dong Wan Shin

(1994). It suffices to show that for any sequence m with m/(np) → 1, h−1/2 ∑m
j=1 |Y j|

p∗
−→ 0. For any

ϵ > 0 and δ > 0, we have

P∗
h− 1

2

m∑
j=1

|Y j| > ϵ
 ≤ 1

h1+ δ
2 ϵ2+δ

E∗

∣∣∣∣∣∣∣∣
m∑

j=1

Y j

∣∣∣∣∣∣∣∣
2+δ

= C
(m

h

)1+ δ
2

E∗|Y j|2+δ (7.3)

and observe

|Y j| ≤
∣∣∣rn(I j+L j−1)

∣∣∣ ∣∣∣rnI j+1

∣∣∣ + ∣∣∣rn(I j+L j−1)
∣∣∣ ∣∣∣rn(I j+L j)

∣∣∣ ≤ 2 max
1≤i, j≤n

|rni|
∣∣∣rn j

∣∣∣ ≤ 2
(
max
1≤i≤n
|rni|

)2
a.s.

E∗|Y j|2+δ ≤ C
(
max
1≤i≤n
|rni|

)4+2δ
= Op

(
n−2−δ

)
.

Therefore (7.3) is equal to Op((m/n)1+δ/2), which tends to zero in probability as n → ∞, and thus the
desired convergence holds. �

Lemma 2.

h−
1
2

(
V∗τ − µ−2

1 B̂∗h
) p∗
−→ 0.

Proof of Lemma 2: We observe h−1/2
(
V∗τ − µ−2

1 B̂∗h
)
= h−1/2µ−2

1
∑sτ

i=n+1 |r∗i−1||r∗i |. Write

h−
1
2

sτ∑
i=n+1

∣∣∣r∗i−1

∣∣∣ ∣∣∣r∗i ∣∣∣ = h
1
2

 sτ∑
i=n+1

(
h−1

∣∣∣r∗i−1

∣∣∣ ∣∣∣r∗i ∣∣∣ − B̂h

) + h
1
2 (sτ − n)B̂h.

Let η1 = n− sτ−1 and η = Lτ − η1, where sτ−1 = L1 + · · ·+ Lτ−1. Note that η, conditional on (η1, sτ−1),
has a geometric distribution with mean 1/p because of the memoryless property of the geometric
distribution. Hence, h1/2[

∑sτ
i=n+1(h−1|r∗i−1||r∗i | − B̂h)] is equal in distribution to h1/2[TI−1,η − ηB̂h], where

I is uniform on {1, . . . , n}. It is enough to show that,

h
1
2

I+η−1∑
j=I

(
h−1

∣∣∣rn( j−1)
∣∣∣ ∣∣∣rn j

∣∣∣ − B̂h

) p
−→ 0 and h

1
2 ηB̂h

p
−→ 0. (7.4)

For any ϵ > 0,

P

h 1
2

I+η−1∑
j=I

(
h−1

∣∣∣rn( j−1)
∣∣∣ ∣∣∣rn j

∣∣∣ − B̂h

)
> ϵ

 = 1
n

n∑
i=1

∞∑
ℓ=1

p(1 − p)ℓ−1P

h 1
2

i+ℓ−1∑
j=i

(
h−1

∣∣∣rn( j−1)
∣∣∣ ∣∣∣rn j

∣∣∣ − B̂h

)
> ϵ

 .
We note that, for δ > 0,

P

h 1
2

i+ℓ−1∑
j=i

(
h−1

∣∣∣rn( j−1)
∣∣∣ ∣∣∣rn j

∣∣∣ − B̂h

)
> ϵ

 ≤ h1+ δ
2

ϵ2+δ E
∣∣∣Ti−1,ℓ − ℓB̂h

∣∣∣2+δ .
It can be shown that E|Ti−1,ℓ − ℓB̂h|2+δ = Cℓ1+δ/2 by applying Minkowski inequality, (see Hwang and
Shin, (2013b), Appendix (i), for a similar but detailed argument). Thus,

P

h 1
2

I+η−1∑
j=I

(
h−1

∣∣∣rn( j−1)
∣∣∣ ∣∣∣rn j

∣∣∣ − B̂h

)
> ϵ

 ≤ C
∞∑
ℓ=1

p(1 − p)ℓ−1h1+ δ
2 ℓ1+ δ

2 = C
(

h
p

)1+ δ
2
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since
∑∞
ℓ=1(1 − p)ℓ−1ℓa = O(1/pa+1) for a ≥ 1. The last term tends to zero since h/p → 0, and thus

the first convergence in probability in (7.4) holds. Now for the second in (7.4), we have

P
(
h

1
2 ηB̂h > ϵ

)
=

∞∑
ℓ=1

p(1 − p)ℓ−1P
(
h

1
2 ℓB̂h > ϵ

)
≤
∞∑
ℓ=1

p(1 − p)ℓ−1 h ℓ2

ϵ2 Var
(
B̂h

)
=

∞∑
ℓ=1

p(1 − p)ℓ−1 h ℓ2

ϵ2

(
hµ4

1(ϑ + 2)
∫ 1

0
σ4

sds + o(1)
)
= C

h2

p2 + o
(

h
p2

)
→ 0

since h/p2 → 0, where identity
∑∞

r=1(1− p)r−1r2 = 2(1− p)/p3 is used. Thus the second convergence
in probability of (7.4) holds, and the proof of Lemma 2 is completed. �

Lemma 3.

h−
1
2

(
Uτ − µ−2

1 B̂h

) d∗−→ N
(
0, (ϑ + 2)

∫ t

0
σ4

s ds
)
.

Proof of Lemma 3: It suffices to show that for any sequence m with m/(np)→ 1,

h−
1
2

(
Um −

m
np
µ−2

1 B̂h

)
d∗−→ N

(
0, (ϑ + 2)

∫ t

0
σ4

s ds
)

(7.5)

since τ = np + Op(
√

np) by Politis and Romano (1994).
For j = 1, . . . ,m, let Zn, j =

√
mhµ−2

1 TI j,L j . Note that Z̄m = (1/m)
∑m

j=1 Zn, j is the average of i.i.d.
variables since {I j} and {L j} are i.i.d. Also, observing

E∗
[
TI j,L j |L j = ℓ

]
= h−1 1

n

n∑
i=1

i+ℓ−1∑
j=i

∣∣∣rn j

∣∣∣ ∣∣∣rn( j+1)
∣∣∣ = h−1 ℓ

n

n∑
i=1

|ri| |ri+1| with rn+1 = r1,

we have

E∗
[
Zn, j|L j

]
=

√
m

n
√

h
µ−2

1 L j

n∑
i=1

|ri| |ri+1| =
√

m

n
√

h
µ−2

1 L jB̂h +

√
m

n
√

h
µ−2

1 L j |r1| |rn|

and thus E∗[Z̄m] =
√

m/(pn
√

h)µ−2
1 B̂h +

√
m/(pn

√
h)µ−2

1 |r1||rn|, of which the second term is Op(1/√
nm) tending to 0 in probability as n → ∞. Thus the left term of (7.5) is equal to

√
m[Z̄m − E∗Z̄m] +

op(1).
Now let Z∗n, j = Zn, j − E∗Zn, j, and then

√
m

[
Z̄m − E∗Z̄m

]
=

1
√

m

m∑
j=1

Z∗n, j.

{Z∗n, j : 1 ≤ j ≤ m} are i.i.d. variables with mean zero under P∗. Thus we obtain, (for ι =
√
−1),

E∗
[
e
ι
(

t√
m

)∑m
j=1 Z∗n, j

]
=

(
E∗

[
e
ι
(

t√
m

)
Z∗n,1

])m

=

[
1 +

ιt
√

m
E∗Z∗n,1 −

t2

2m
(1 + o(1))E∗

(
Z∗n,1

)2
]m

. (7.6)
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By Lemma 5 below, we have

h−1Var∗
(
µ−2

1 B̂∗h
)
= Var∗

(
Z∗n,1

) p
−→ (ϑ + 2)

∫ 1

0
σ4

sds.

Therefor (7.6) tends to exp(−(1/2)t2(ϑ + 2)
∫ 1

0 σ4
sds) in probability, and the desired asymptotic nor-

mality result in Lemma 3 is obtained. �

Lemma 4.

h−
1
2 µ−2

1

(
E∗

(
B̂∗h

)
− B̂h

) p
−→ 0.

Proof of Lemma 4: By the stationarity, the result in this lemma is obvious. �

Lemma 5. ∣∣∣∣Var∗
(
h−

1
2 µ−2

1 B̂∗h
)
− Var

(
h−

1
2 µ−2

1 B̂h

)∣∣∣∣ p
−→ 0.

Proof of Lemma 5: We show that h−1Var∗(B̂∗h) and h−1Var(B̂h) have the same limit. Let Xi = h−1

|ri||ri+1| and X∗i = h−1|r∗i ||r∗i+1| for i = 1, . . . , n − 1. Then B̂∗h = h
∑n−1

i=1 X∗i . Observe that

h−1Var∗
(
B̂∗h

)
= h−1Var∗

h n−1∑
i=1

X∗i

 = v∗X(0) + 2
n−2∑
i=1

(
1 − i

n − 1

)
v∗X(i) + op(1),

where v∗X(i) = Cov∗(X∗1, X
∗
1+i) = h−2Cov∗(|r∗1||r∗2|, |r∗1+i||r∗2+i|). �

Note that by the normality in (7.1) of Barndorff-Nielsen and Shephard (2006),

lim
n→∞

h−1Var
(
µ−2

1 B̂h

)
= (ϑ + 2)

∫ 1

0
σ4

sds,

which can be expressed as the limiting of µ−4
1 [vX(0) + 2

∑n−2
i=1 vX(i)] where vX(i) = Cov(X1, X1+i) =

h−2Cov(|r1||r2|, |r1+i||r2+i|). That is, h−1Var(B̂h) = vX(0) + 2
∑n−2

i=1 vX(i) + o(1). Thus, it suffices to show
that

v∗X(0) + 2
n−2∑
i=1

(
1 − i

n − 1

)
v∗X(i) = vX(0) + 2

n−2∑
i=1

vX(i) + op(1). (7.7)

By Politis and Romano (1994) or Nordman (2009) the left term of (7.7) is equal to

γ̂(0) + 2
n−2∑
j=1

((
1 − i

n − 1

)
(1 − p)i +

i
n − 1

(1 − p)n−1−i
)
γ̂(i) (7.8)

where γ̂(i) = {1/(n−1)}∑n−1
j=1 (X j− X̄)(X j+i− X̄) with X̄ = {1/(n−1)}∑n−1

j=1 X j. By similar arguments to
those in Politis and Romano (1994) or Hwang and Shin (2012), the limit of (7.8) can be shown to be
the same as the limit of the right term in (7.7) under the finite moment condition of (A3). Therefore,
the result in Lemma 5 holds. �
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Now we are ready to prove our main result in Theorem 1 of this paper, whose proof is given by
Taylor’s expansion with the bivariate normality result in Theorem 5.

Proof of Theorem 1: We apply Taylor’s expansion to ψ : R2 → R, ψ(x, y) = y/x and obtain

h−
1
2

µ−2
1 B̂∗h
Q̂∗h

−
µ−2

1 E∗
(
B̂∗h

)
E∗

(
Q̂∗h

)  = −µ−2
1 E∗

(
B̂∗h

)
(
E∗Q̂∗h

)2 h−
1
2

[
Q̂∗h − E∗

(
Q̂∗h

)]
+

1

E∗
(
Q̂∗h

)h−
1
2 µ−2

1

[
B̂∗h − E∗

(
B̂∗h

)]
+ op

([
h−

1
2

(
Q̂∗h − E∗

(
Q̂∗h

))]2
+

[
h−

1
2 µ−2

1

(
B̂∗h − E∗

(
B̂∗h

))]2)
= −

µ−2
1 E∗

(
B̂∗h

)
(
E∗Q̂∗h

)2 Z1 +
1

E∗
(
Q̂∗h

)Z2 + op(1),

where(Z1,Z2)′ is the random vector with N(0,Σ) distribution by Theorem 5. Observe E∗(Q̂∗h) = Q̂h

and E∗(B̂∗h) = (n − 1)E∗[|r∗1||r∗2|]. Since E∗[|r∗1||r∗2|] = E∗[|r∗1||r∗2||L1 > 1]P(L1 > 1) + E[|r∗1||r∗2||L1 ≤
1]P(L1 ≤ 1) = (1/n)

∑n
j=1 |rn j||rn( j+1)|(1− p)+ ((1/n)

∑n
j=1 |r j|)2 p = {(1− p)/n}B̂h +Op(p/n), E∗(B̂∗h) =

B̂h + Op(1/n) + Op(p). Thus the limit of the conditional variance exists as:

Var∗
h− 1

2

µ−2
1 B̂∗h
Q̂∗h

−
µ−2

1 E∗
(
B̂∗h

)
E∗

(
Q̂∗h

) 


= Var∗

−µ
−2
1 E∗

(
B̂∗h

)
(
E∗Q̂∗h

)2 Z1 +
1

E∗
(
Q̂∗h

)Z2 + op(1)


=
µ−4

1

(
B̂h + Op (1/n) + Op(p)

)2

Q̂4
h

σ2
1 +

1
Q̂2

h

σ2
2 − 2

µ−2
1

(
B̂h + Op (1/n) + Op(p)

)
Q̂3

h

σ12 + op(1)

→
µ−4

1 BV2

QV4 σ2
1 +

1
QV2σ

2
2 − 2

µ−2
1 BV
QV3 σ12.

Therefore the desired asymptotic normality holds and thus the asymptotic result in (i) is shown. Now
in order to show (ii), it suffices to show that Var∗(B̂∗h)

p
−→ 0 and Var∗(Û∗h)

p
−→ 0, by the Chebyshev

inequality. The first convergence follows from Theorem 4. For the second convergence of Û∗h, let
Y∗i = h−2|r∗i r∗i+1r∗i+2r∗i+3|, i = 1, 2, . . . , n − 3, we observe

Var∗
(
Û∗h

)
= Var∗

h−1
n∑

i=4

∣∣∣r∗i r∗i−1r∗i−2r∗i−3

∣∣∣ = Var∗
h n−3∑

i=1

Y∗i


= h2(n − 3)

v∗Y (0) + 2
n−3∑
i=1

(
1 − i

n − 3

)
v∗Y (i)

 ,
where v∗Y (i) = Cov∗(Y∗1 ,Y

∗
1+i), j = 0, 1, . . . , n − 3. Similarly to the argument in the proof of Lemma 5,

it can be shown that v∗Y (0)+2
∑n−3

i=1 [1−{i/(n−3)}]v∗Y (i) has the same limit of vY (0)+2
∑n−3

i=1 vY (i) where
vY (i) = Cov(Y1,Y1+i) with Yi = h−2|riri+1ri+2ri+3|. Thus the limit of v∗Y (0) + 2

∑n−3
i=1 (1 − i/(n − 3))v∗Y (i)

exists and hence Var∗(Û∗h)→ 0 as h→ 0. �



176 Eunju Hwang, Dong Wan Shin

Proof of Theorem 2: Its proof is given in the same way as that in Theorem 3.2 of Hwang and Shin
(2014), which is consistency of the i.i.d bootstrap test for the jumps via the result of Theorem 3.1
of Hwang and Shin (2014). The same argument but the stationary bootstrap asymptotic result in
Theorem 3.1 in this paper are used.

Under the alternative hypothesis with jump component
∑N1

j=1 c2
j > 0, Q̂h − µ−2

1 B̂h
p
−→ ∑N1

j=1 c2
j , and

P

Ĥ ≤ H∗(α)

∣∣∣∣∣∣∣∣
N1∑
j=1

c2
j > 0

 = P

− h−
1
2
∑N1

j=1 c2
j

Q̂h

√
ϑÛh/B̂2

h

≤ H∗(α)

 + op(1),

which tends to P(−∞ ≤ H∗(α)) = 1 as h→ 0, provided H∗(α) = Op(1).
We will complete the proof by showing that H∗(α) = Op(1). For the empirical α-th quantile of m

bootstrap values of (3.1), we observe the numerator of the form h−1/2[µ−2
1 B̂∗h/Q̂

∗
h − µ−2

1 B̄∗h/Q̄
∗
h], which

is decomposed into

h−
1
2

µ−2
1

B̂∗h
Q̂∗h
− µ−2

1

E∗
(
B̂∗h

)
E∗

(
Q̂∗h

)  + h−
1
2

µ−2
1

E∗
(
B̂∗h

)
E∗

(
Q̂∗h

) − µ−2
1

B̄∗h
Q̄∗h

 =: A1 + A2.

It is clear that A1 = Op(1). In order to observe A2, we use similar arguments to those in Theorem
5. Then it can be shown that h−1/2[Q̄∗h − E∗(Q̂∗h), µ−2

1 B̄∗h − µ−2
1 E∗(B̂∗h)] follows asymptotically bivariate

normality. Thus, similarly to the proof of Theorem 1, it follows that

h−
1
2

µ−2
1 B̄∗h
Q̄∗h

−
µ−2

1 E∗
(
B̂∗h

)
E∗

(
Q̂∗h

)  = Op(1),

and thus A2 = Op(1). �
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