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ENTROPY-BASED GOODNESS OF FIT TEST FOR A

COMPOSITE HYPOTHESIS

Sangyeol Lee

Abstract. In this paper, we consider the entropy-based goodness of fit
test (Vasicek’s test) for a composite hypothesis. The test measures the
discrepancy between the nonparametric entropy estimate and the para-
metric entropy estimate obtained from an assumed parametric family of
distributions. It is shown that the proposed test is asymptotically normal
under regularity conditions, but is affected by parameter estimates. As
a remedy, a bootstrap version of Vasicek’s test is proposed. Simulation
results are provided for illustration.

1. Introduction

For decades, the goodness of fit (gof) test for statistical models has been a
core issue in statistical analysis. The gof test has a long history and various
methodologies have been developed by many researchers. See, for instance,
D’Agostino and Stephens [3]. The entropy based gof test, the entropy based
gof test has been very popular among practitioners in diverse fields. In partic-
ular, the entropy test of Vasicek [11] has been studied extensively in the litera-
ture. His approach involves a nonparametric estimate (m-spacing estimate) of
Shannon’s entropy. Thus far, a number of articles exist on the distributional
properties of Vasicek’s test: see, for instance, Kashimov [5], van Es [10], Beirant
et al. [2], Song [8], and the references therein. Among them, Song [8] rigor-
ously verifies that Vasicek’s estimator is consistent and asymptotically normal
under certain regularity conditions. This result is easily applicable to simple
vs. simple gof tests. However, attention has not yet been paid to composite hy-
pothesis tests. In the literature, it is well known that gof tests are often affected
by parameter estimation, and their limiting distributions rely on the choice of
parameter estimators. This phenomenon is prominent in the empirical process
of the gof tests, as seen in Durbin [4], and often leads practitioners to a burden-
some situation. This difficulty may be overcome by using the transformation
method proposed by Khmaladze [6], Bai [1] and Lee [7], which, however, is not

Received April 28, 2014; Revised July 27, 2014.
2010 Mathematics Subject Classification. 62G05, 62G20.
Key words and phrases. goodness of fit test, entropy test, Vasicek’s test, composite hy-

pothesis test, bootstrap test.

c©2016 Korean Mathematical Society

351



352 SANGYEOL LEE

easy to implement owing to a time consuming computational process. In this
study, we focus on the entropy test to measure the discrepancy between the
nonparametric entropy estimate (Vasicek’s estimate) and the parametric en-
tropy estimate obtained from the assumed parametric family of distributions.
Although simple and natural, to our knowledge, no literature has explicitly
considered this test. It may be because the proposed test is severely affected
by parameter estimation, and thus, is not as useful in actual implementation.
Conventionally, gof methods depending on asymptotic theories do not perform
well for small samples, and particularly, in the implementation of Vasicek’s test,
the choice of spacing parameter m escalates this difficulty. As a remedy, it is
natural to adopt the parametric bootstrap approach and construct a bootstrap
version of the tests. Thus, we propose a bootstrap version of Vasicek’s test
for a composite hypothesis and investigate its finite sample behavior through
a simulation study. The organization of this paper is as follows. In Section 2,
we introduce Vasicek’s test and show that a certain asymptotic expansion form
holds for Vasicek’s test with plugged-in estimators and leads to a result having
asymptotic normality. Further, we introduce a bootstrap version of Vasicek’s
test and demonstrate that its usage is justifiable. In Section 3, we conduct a
simulation study to evaluate the proposed bootstrap test and compare its per-
formance with other existing tests. Concluding remarks are provided in Section
4.

2. Main result

Given an i.i.d. random sample X1, . . . , Xn with common distribution F ,
Vasicek (1992) proposed as an estimate of H(F ) = −

∫

log f(x)f(x)dx the
following:

Vmn =
1

n

n
∑

i=1

log
n

2m
(X(i+m) −X(i−m)),(2.1)

where f = F
′

, X(i) denotes the ordered r.v.s., and X(i) = X(1) for i < 1
and X(i) = X(n) for i > n. Later, Song (2000) showed that if the following
conditions are fulfilled

(R1) E(log f(X1))
2 <∞;

(R2) supφ(F )<x<ψ(F ) F (x)(1 − F (x)) |f
′

(x)|
f2(x) <∞;

(R3) m = mn satisfies logn/m = o(1) and m(log n)2/3/n1/3 = o(1) as n →
∞,

where φ(F ) = sup{x : F (x) = 0} and ψ(F ) = inf{x : F (x) = 1}, then

(2.2) n1/2(Vmn −H(F ) + log 2m+ γ −R2m−1)
d
→ N (0, σ2(F )),

where Rn =
∑n

i=1 1/i, γ = limn→∞(Rn− logn), and σ2(F ) = V ar(log f(X1)).
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The result in (2.2) is applicable to a goodness of fit test for a composite
hypothesis such as

H0 : Xi ∼ F = Fθ0 vs. H1 : Xi ∼ F 6∈ {Fθ},

where {Fθ} is a parameter family indexed with θ ∈ Θ, a subset of Rd, d ≥ 1,
and θ0 is an interior point of Θ. The result in (2.2) indicates that under (R1)
and (R2), with F replaced by Fθ0 , and (R3),

(2.3) n1/2(Vmn −H(Fθ0) + log 2m+ γ −R2m−1)
d
→ N (0, σ2(Fθ0)),

where fθ = F
′

θ is continuous in θ, H(Fθ) = −
∫

log(fθ(x))fθ(x)dx and σ2(Fθ) =
V arθ(log fθ(X1)) for all θ. Here, V arθ and Eθ denote the variance and expec-
tation under Fθ, respectively.

The argument in (2.3) suggests a test based on the difference between Hn

and H(θ̂n), where θ̂n is a consistent estimator of θ0, since H(θ0) is unknown.

As usual, we assume n1/2(θ̂n − θ0) = OP (1) under H0. In view of the proof of
Theorem 1 of Song [8], it can be seen that

(2.4) Vmn = Hn − log 2m− γ +R2m−1 + oP (n
−1/2),

where Hn = − 1
n

∑n

i=1 log fθ0(Xi). Hence,

(2.5) Vmn −H(F
θ̂n
) + log 2m+ γ −R2m−1 = Hn −H(F

θ̂n
) + oP (n

−1/2).

Then, we have the result addressed below.

Theorem 1. Suppose that

(R1)
′

Eθ0(log f(X1))
2 <∞.

(R2)
′

supφ(Fθ0
)<x<ψ(Fθ0

) Fθ0(x)(1 − Fθ0(x))
|f

′

θ0
(x)|

f2
θ0

(x)
<∞.

Further, assume (R3),

(R4) Eθ0
∂
∂θ

log fθ0(X1) = 0 and u(θ) = ∂
∂θ
H(θ) = −

∫

log fθ(x)
∂
∂θ
fθ(x)dx is

continuous in θ.

(R5) θ̂n − θ0 = n−1
∑n

i=1 lθ0(Xi) + oP (n
−1/2), where lθ is a d × 1 vector

function with Eθ0 lθ0(X1) = 0 and V arθ0 ||lθ0(X1)|| <∞, where || · || is
a Euclidean norm.

Then, under H0,

Tn := n1/2(Vmn −H(F
θ̂n
) + log 2m+ γ −R2m−1)

d
→ N(0, τ2)

with τ2 = V arθ0(log fθ0(X1) +H(Fθ0) + lθ0(X1)
Tu(θ0)).

Proof. By the mean value theorem, H(F
θ̂n
) − H(Fθ0) = (θ̂n − θ0)

Tu(θ0) +

ρn, where ||ρn|| ≤ ηn sup||θ−θ0||≤ηn ||u(θ) − u(θ0)|| = oP (n
−1/2) with ηn =

||θ̂n − θ0|| owing to (R4) and (R5). Combining this and (2.5), the theorem is
validated. �
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Theorem 1 indicates that the parameter estimation affects the null limiting
distribution, and further, there is a serious difficulty in estimating τ2 when the
explicit form of lθ is unknown.

Remark. One may consider another test based on Ĥn = − 1
n

∑n

i=1 log fθ̂n(Xi).

Put ∆n = n1/2(Ĥn −Hn) and suppose that the following holds:

(R6) ∂fθ
∂θ

is continuous in θ and for some ǫ > 0,

d
∑

i=1

sup
|θi−θ0i|≤ǫ

∣

∣

∣

∣

∣

∂fθ(x)
∂θi

fθ(x)

∣

∣

∣

∣

∣

≤ g(x), Eθ0g(X1) <∞,

where θi denotes the i-th entry of θ. By the mean value theorem, we can
express

∆n =
√
n(θ0 − θ̂n)

T 1

n

n
∑

i=1

∂f
θ
′

n

∂θ

fθ′n

,

where θ
′

n is between θ0 and θ̂n. Then, using (R6), we can easily see that for all
i = 1, . . . , d,

1

n

n
∑

i=1

∂f
θ
′

n

∂θi

fθ′n
−

1

n

n
∑

i=1

∂fθ0
∂θi

fθ0
= oP (1).

Together with (R4), this entails (2.3), and thus, ∆n = oP (1). Then, in view of

(2.4), (2.5), and Theorem 1, we have that under (R1)
′

, (R2)
′

, and (R3)–(R6),

T
′

n := n1/2(Ĥn −H(F
θ̂n
))

d
→ N(0, τ2).

Meanwhile, Song’s approach can be also extended to a rowwise independent
double array of random variables, say, Xn1, . . . , Xnn. Suppose that Xni, i =
1, . . . , n follows from Fθn where {θn} is a sequence in Θ that converges to an
interior point θ0 ∈ Θ as n tends to ∞. In this case, we can consider the
estimator

DVmn =
1

n

n
∑

i=1

log
n

2m
(Xn,(i+m) −Xn,(i−m)),

where Xn,(i) are analogously defined as X(i).
In what follows, we assume

(R1)
′′

For some ǫ > 0,
∫

sup
||θ−θ0||≤ǫ

(1 + (log fθ(x))
2)fθ(x)dx <∞,

(R2)
′′

φ(Fθ) = φ and ψ(Fθ) = ψ for all θ. Further, for some ǫ > 0,

sup
φ<x<ψ

sup
||θ−θ0||≤ǫ

Fθ(x)(1 − Fθ(x))
|f

′

θ(x)|

f2
θ (x)

<∞.
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Then, if we put

DHn = −
1

n

n
∑

i=1

log fθn(Xni),

following essentially the same lines as in the proof of Theorem 1 of Song [8],
one can check that provided (R3) holds,

DVmn + log 2m+ γ −R2m−1 = DHn + oP (n
−1/2).

Then, if the following condition is satisfied:

(R4)
′

Eθ
∂
∂θ

log fθ(X1) = 0 for all θ and u(θ) in (R4) is continuous in θ,

and if the estimator θ̂nn of θn based on Xni, i = 1, . . . , n satisfies:

(R5)
′

θ̂nn − θn = n−1
∑n

i=1 lθn(Xni) + oP (n
−1/2), where lθ is continuous in

θ, Eθlθ(X1) = 0 for all θ, and
∫

sup||θ−θ0||≤ǫ ||lθ(x)||
2fθ(x)dx < ∞ for some

ǫ > 0,

using the dominated convergence theorem and Lindeberg’s central limit theo-
rem, we can have

√
n(DHn −H(F

θ̂nn
))

d
→ N (0, τ2),

and subsequently, we have the following.

Theorem 2. Under (R1)
′′

, (R2)
′′

, (R3), (R4)
′

and (R5)
′

,

(2.6)
√
n(DVmn −H(F

θ̂nn
) + log 2m+ γ −R2m−1)

d
→ N (0, τ2).

The argument in (2.6) suggests that a bootstrap test can be designed for the
composite hypothesis test in Theorem 1. Here, we use the parametric bootstrap

method as in Stute et al. [9]. Given sample X1, . . . , Xn, we estimate θ0 by θ̂n
and generate the bootstrap sample from F

θ̂n
, say, X∗

1 , . . . , X
∗
n, and put

V ∗
mn =

1

n

n
∑

i=1

log
n

2m
(X∗

(i+m) −X∗
(i−m)).

Then, if θ̂n → θ0 a.s., θ̂∗n is the estimator based on the bootstrap sample, and

(R5)
′

holds for any sequence {θn} that converges to θ0: in other words, lθ in

(R5)
′

satisfies

(R5)
′′

θ̂∗n − θ̂n = n−1
∑n

i=1 lθ̂n(X
∗
i ) + oP (n

−1/2),

we can conclude that under (R1)
′′

, (R2)
′′

, (R3) and (R4)
′

,

(2.7) T ∗
n :=

√
n(V ∗

mn −H(F
θ̂∗n
) + log 2m+ γ −R2m−1)

d
→ N (0, τ2) a.s..

By obtaining |T ∗
n | for the bootstrapped sample B times, say, |T ∗b

n |, b = 1, . . . , B,
we can calculate sample quantiles, say c = c(n, α), given any significance level α.
Then, we reject H0 if |Tn| ≥ c. This bootstrap method provides a more stable
test, unaffected by the choice of spacing parameter m, especially in handling
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small samples, as seen in the simulation study below, where we focus on the
finite sample behavior of T ∗

n and investigate its empirical sizes and powers.

3. Simulation

In this simulation study, we evaluate the bootstrap Vasicek’s test T ∗
n (T)

and compare its performance with the Kolmogorov-Smirnov (KS), Cramer-von
Mises (CV), and Anderson-Darling (AD) tests. To be fair, we also employ the
bootstrap versions of KS, CV, and AD tests.

For this, we consider
Group1: Laplace(0, 1), Normal(0, 1), and Student’s t(3) distributions

and
Group2: Gamma, Inverse-Gaussian (IG), and Weibull distributions with

skewness equal to 1.414. The shape parameter of the Gamma, IG, and Weibull
are 2, 4.5, and 1.259, respectively, and the scale parameter of the distribution
is equal to 1 in all cases.

The figures in Tables 1-6 (Tables 1-3 for Group 1 and Tables 4-6 for Group
2) exhibit the proportion of the number of rejections of the null hypothesis
out of 500 repetitions with B = 500. Here, we use (n = 20,m = 4, 5, 6, 7),
(n = 50,m = 6, 7, 8, 9), (n = 100,m = 8, 9, 10, 11), nominal level 0.05, and
repetition number 1,000. In all the cases, the sizes turn out to be close to the
nominal level regardless of the choice of n,m and the power tends to increase
as the sample size increases. In particular, it is shown that none of the tests
outperform the others perfectly: our test significantly outperforms other tests in
the cases of Student’s t vs. Normal and Weibull vs. Inverse-Gaussian. As seen
in the tables, the choice of m can affect the performance of the test in power.
Thus, it may be an important issue to choose an optimal m that produces
the best powers, but it is difficult to set up a rule theoretically to obtain such
m. Our past experience suggests that one may choose m = c1 + c2n

1/3 for
some suitable c1, c2 > 0, but this cannot be directly applied to all situations.
In practice, for a given gof test, one could obtain an optimal m empirically
through a simulation. Overall, our findings show that the bootstrap Vasicek’s
test performs adequately and is compatible with other existing tests.

4. Concluding remarks

To perform a gof test for a composite hypothesis, we suggested to use of
a bootstrap Vasicek’s test. A simulation study indicates that the bootstrap
test performs adequately in terms of size and power. The comparison study
with other tests such as the KS, CV, and AD tests indicates that none of these
tests outperform the others completely. Vasicek’s test appears to outperform
the others in some situations and is proven to be a useful tool to perform a
gof test. Manifestly, it would be of great interest to extend our method to
dependent data sets, especially the residuals from time series models such as
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autoregressive and GARCH models. Thus, we leave this as a task of our future
study.

Table 1. Laplace null model: sizes and powers

distribution n m T KS CV AD
Size Laplace(0,1) 20 4 0.064 0.052 0.052 0.048

20 5 0.050 0.052 0.056 0.054
20 6 0.058 0.050 0.052 0.050
20 7 0.064 0.056 0.058 0.054
50 6 0.048 0.048 0.072 0.062
50 7 0.046 0.048 0.046 0.044
50 8 0.036 0.056 0.068 0.064
50 9 0.058 0.036 0.038 0.042
100 8 0.046 0.058 0.054 0.046
100 9 0.056 0.056 0.038 0.046
100 10 0.050 0.060 0.040 0.048
100 11 0.042 0.052 0.050 0.052

Power Normal(0,1) 20 4 0.195 0.076 0.084 0.078
20 5 0.222 0.096 0.076 0.068
20 6 0.252 0.096 0.094 0.082
20 7 0.240 0.088 0.094 0.082
50 6 0.442 0.180 0.170 0.164
50 7 0.482 0.168 0.152 0.138
50 8 0.492 0.180 0.158 0.142
50 9 0.568 0.212 0.192 0.152
100 8 0.690 0.364 0.404 0.342
100 9 0.692 0.386 0.420 0.370
100 10 0.696 0.420 0.420 0.378
100 11 0.718 0.406 0.396 0.348

Power t(3) 20 4 0.070 0.058 0.058 0.072
20 5 0.080 0.064 0.072 0.092
20 6 0.048 0.060 0.058 0.066
20 7 0.072 0.078 0.062 0.066
50 6 0.078 0.068 0.064 0.076
50 7 0.060 0.074 0.058 0.068
50 8 0.082 0.098 0.100 0.011
50 9 0.056 0.086 0.076 0.009
100 8 0.046 0.104 0.092 0.110
100 9 0.064 0.098 0.088 0.100
100 10 0.054 0.078 0.070 0.074
100 11 0.088 0.078 0.074 0.088
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Table 2. Normal null model: sizes and powers

distribution n m T KS CV AD
Size Normal(0,1) 20 4 0.044 0.062 0.060 0.058

20 5 0.054 0.064 0.050 0.044
20 6 0.068 0.048 0.060 0.060
20 7 0.050 0.070 0.052 0.056
50 6 0.050 0.068 0.058 0.064
50 7 0.052 0.050 0.046 0.044
50 8 0.058 0.056 0.044 0.044
50 9 0.056 0.042 0.054 0.062
100 8 0.032 0.066 0.058 0.050
100 9 0.052 0.058 0.054 0.056
100 10 0.066 0.036 0.046 0.042
100 11 0.034 0.046 0.050 0.040

Power t(3) 20 4 0.136 0.226 0.290 0.320
20 5 0.104 0.252 0.302 0.324
20 6 0.116 0.304 0.326 0.366
20 7 0.092 0.246 0.302 0.332
50 6 0.276 0.470 0.550 0.570
50 7 0.248 0.524 0.612 0.626
50 8 0.158 0.444 0.514 0.548
50 9 0.120 0.474 0.586 0.622
100 8 0.528 0.704 0.786 0.824
100 9 0.514 0.748 0.844 0.864
100 10 0.404 0.722 0.808 0.844
100 11 0.348 0.712 0.832 0.850

Power Laplace(0,1) 20 4 0.062 0.232 0.268 0.274
20 5 0.048 0.230 0.248 0.274
20 6 0.048 0.244 0.296 0.292
20 7 0.034 0.208 0.230 0.236
50 6 0.210 0.458 0.580 0.576
50 7 0.128 0.456 0.558 0.556
50 8 0.110 0.434 0.536 0.548
50 9 0.068 0.400 0.522 0.528
100 8 0.428 0.690 0.812 0.806
100 9 0.380 0.716 0.824 0.840
100 10 0.318 0.742 0.836 0.836
100 11 0.258 0.704 0.814 0.816
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Table 3. Student’s t null model: sizes and powers

distribution n m T KS CV AD
Size t(3) 20 4 0.066 0.060 0.050 0.056

20 5 0.060 0.072 0.054 0.050
20 6 0.056 0.058 0.052 0.056
20 7 0.054 0.048 0.048 0.053
50 6 0.048 0.048 0.040 0.040
50 7 0.042 0.028 0.042 0.046
50 8 0.048 0.036 0.042 0.042
50 9 0.044 0.052 0.046 0.054
100 8 0.028 0.060 0.056 0.050
100 9 0.052 0.044 0.042 0.040
100 10 0.058 0.058 0.052 0.050
100 11 0.074 0.044 0.050 0.054

Power Laplace(0,1) 20 4 0.068 0.044 0.038 0.036
20 5 0.086 0.044 0.046 0.042
20 6 0.066 0.052 0.054 0.056
20 7 0.072 0.058 0.060 0.056
50 6 0.080 0.058 0.048 0.046
50 7 0.072 0.052 0.056 0.058
50 8 0.082 0.058 0.044 0.028
50 9 0.074 0.042 0.052 0.042
100 8 0.104 0.056 0.048 0.044
100 9 0.116 0.078 0.060 0.052
100 10 0.070 0.064 0.048 0.052
100 11 0.068 0.058 0.038 0.040

Power Normal(0,1) 20 4 0.312 0.060 0.054 0.048
20 5 0.358 0.060 0.052 0.040
20 6 0.356 0.052 0.042 0.030
20 7 0.328 0.044 0.030 0.026
50 6 0.804 0.052 0.048 0.050
50 7 0.854 0.044 0.048 0.046
50 8 0.816 0.048 0.050 0.050
50 9 0.810 0.030 0.042 0.013
100 8 0.990 0.044 0.060 0.130
100 9 0.996 0.062 0.096 0.158
100 10 0.992 0.064 0.084 0.144
100 11 0.984 0.068 0.088 0.136
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Table 4. Gamma null model: sizes and powers

distribution n m T KS CV AD
Size Gamma k=2 20 4 0.060 0.062 0.058 0.050

20 5 0.048 0.054 0.052 0.046
20 6 0.044 0.056 0.048 0.048
20 7 0.046 0.072 0.078 0.074
50 6 0.040 0.046 0.050 0.056
50 7 0.034 0.034 0.038 0.038
50 8 0.044 0.048 0.046 0.050
50 9 0.046 0.036 0.038 0.034
100 8 0.056 0.050 0.05 0.056
100 9 0.058 0.058 0.052 0.054
100 10 0.048 0.048 0.056 0.054
100 11 0.056 0.056 0.054 0.060

Power Inverse Gaussian λ=4.5 20 4 0.068 0.078 0.080 0.084
20 5 0.072 0.078 0.096 0.098
20 6 0.044 0.110 0.100 0.100
20 7 0.034 0.082 0.080 0.082
50 6 0.110 0.124 0.132 0.152
50 7 0.084 0.114 0.152 0.168
50 8 0.098 0.128 0.152 0.174
50 9 0.084 0.148 0.158 0.166
100 8 0.164 0.198 0.240 0.278
100 9 0.150 0.224 0.268 0.298
100 10 0.126 0.248 0.272 0.308
100 11 0.128 0.208 0.248 0.264

Power Weibull k=1.259 20 4 0.078 0.054 0.064 0.064
20 5 0.066 0.070 0.072 0.070
20 6 0.034 0.066 0.050 0.048
20 7 0.054 0.062 0.082 0.084
50 6 0.056 0.078 0.076 0.072
50 7 0.072 0.064 0.062 0.066
50 8 0.060 0.062 0.056 0.062
50 9 0.070 0.058 0.066 0.068
100 8 0.074 0.080 0.090 0.088
100 9 0.066 0.070 0.072 0.070
100 10 0.088 0.096 0.094 0.084
100 11 0.086 0.074 0.092 0.088
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Table 5. Inverse Gaussian null model: sizes and powers

distribution n m T KS CV AD
Size Inverse Gaussian λ=4.5 20 4 0.086 0.060 0.074 0.076

20 5 0.040 0.052 0.048 0.054
20 6 0.042 0.050 0.050 0.044
20 7 0.062 0.040 0.044 0.040
50 6 0.062 0.064 0.056 0.048
50 7 0.050 0.066 0.074 0.068
50 8 0.056 0.048 0.052 0.052
50 9 0.056 0.038 0.044 0.042
100 8 0.054 0.052 0.060 0.054
100 9 0.052 0.062 0.048 0.050
100 10 0.048 0.052 0.048 0.058
100 11 0.058 0.052 0.052 0.046

Power Gamma k=2 20 4 0.162 0.266 0.324 0.322
20 5 0.150 0.270 0.314 0.324
20 6 0.106 0.306 0.324 0.328
20 7 0.076 0.280 0.336 0.348
50 6 0.416 0.562 0.644 0.654
50 7 0.346 0.562 0.632 0.638
50 8 0.306 0.518 0.600 0.618
50 9 0.296 0.586 0.660 0.678
100 8 0.680 0.814 0.868 0.874
100 9 0.628 0.824 0.884 0.898
100 10 0.608 0.840 0.880 0.888
100 11 0.574 0.832 0.864 0.870

Power Weibull k=1.259 20 4 0.342 0.476 0.516 0.524
20 5 0.286 0.468 0.514 0.532
20 6 0.256 0.504 0.540 0.560
20 7 0.220 0.522 0.550 0.552
50 6 0.730 0.834 0.880 0.890
50 7 0.700 0.826 0.872 0.876
50 8 0.632 0.818 0.854 0.870
50 9 0.616 0.816 0.872 0.870
100 8 0.978 0.994 0.998 0.998
100 9 0.944 0.984 0.994 0.994
100 10 0.938 0.984 0.998 0.998
100 11 0.924 0.968 0.994 0.994
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Table 6. Weibull null model: sizes and powers

distribution n m T KS CV AD
Size Weibull k=1.259 20 4 0.058 0.044 0.032 0.042

20 5 0.034 0.060 0.052 0.046
20 6 0.046 0.050 0.062 0.066
20 7 0.036 0.054 0.050 0.056
50 6 0.040 0.044 0.040 0.058
50 7 0.058 0.048 0.052 0.062
50 8 0.044 0.054 0.044 0.056
50 9 0.042 0.050 0.052 0.052
100 8 0.060 0.050 0.046 0.050
100 9 0.054 0.074 0.058 0.062
100 10 0.050 0.078 0.074 0.080
100 11 0.072 0.048 0.044 0.052

Power Inverse Gaussian λ=4.5 20 4 0.228 0.158 0.190 0.190
20 5 0.248 0.168 0.210 0.214
20 6 0.248 0.144 0.192 0.198
20 7 0.222 0.174 0.212 0.208
50 6 0.668 0.378 0.524 0.582
50 7 0.660 0.412 0.518 0.564
50 8 0.638 0.330 0.486 0.560
50 9 0.602 0.372 0.470 0.534
100 8 0.942 0.688 0.840 0.890
100 9 0.938 0.664 0.834 0.904
100 10 0.920 0.692 0.828 0.898
100 11 0.940 0.704 0.852 0.914

Power Gamma k=2 20 4 0.068 0.070 0.068 0.066
20 5 0.060 0.064 0.058 0.070
20 6 0.056 0.058 0.076 0.084
20 7 0.044 0.080 0.074 0.072
50 6 0.092 0.074 0.092 0.084
50 7 0.086 0.082 0.086 0.078
50 8 0.090 0.082 0.086 0.094
50 9 0.084 0.082 0.088 0.092
100 8 0.140 0.094 0.124 0.132
100 9 0.118 0.108 0.136 0.130
100 10 0.114 0.084 0.108 0.128
100 11 0.150 0.110 0.146 0.156
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