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Abstract

This research examines the power of bootstrap two-sample test, and compares it with the powers 
of two-sample test and Wilcoxon rank sum test, through simulation. For simulation work, a 
positively skewed and heavy tailed distribution was selected as a population distribution, the 
chi-square distributions with three degrees of freedom,  . For two independent samples, the fist 
sample was selected from  . The second sample was selected independently from the same   as 
the first sample, and calculated     for each sampled value  , a randomly selected value from 

 . The   in     has from 0 to 5 by 0.5 interval, and the   has from 1.0 to 1.5 by 0.1 interval. 

The powers of three methods were evaluated for the sample sizes 10,20,30,40,50. The null 
hypothesis was the two population medians being equal for Bootstrap two-sample test and Wilcoxon 
rank sum test, and the two population means being equal for the two-sample  test. The powers 
were obtained using r program language; wilcox.test() in r base package for Wilcoxon rank sum 
test, t.test() in r base package for the two-sample  test, boot.two.bca() in r wBoot pacakge for the 
bootstrap two-sample test. 

Simulation results show that the power of Wilcoxon rank sum test is the best for all 330      
combinations and the power of two-sample   test comes next, and the power of bootstrap 
two-sample comes last. As the results, it can be recommended to use the classic inference methods 
if there are widely accepted and used methods, in terms of time, costs, sometimes power.

Keyword: Bootstrap inference, chi-square distribution, power of test, two-sample test, 
Wilcoxon rank sum test.
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1. Introduction
2)

The comparison of two independent samples 
is a fundamental inference procedure in 
statistics. Data scientists often use the terms 
of A-B test instead of the two-sample test. 

†Corresponding author: syheo@changwon.ac.kr

The two-sample test has been widely applied 
in many research fields: education, psychology, 
chemistry, marketing, clinical trials, and so 
on. In the two-sample problem. the most 
general application is the testing of equality 
between two location measures. 

Traditional way for testing the equality of 
two location parameters is the two-sample 
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test. Two-sample  test is a parametric 
procedures to test the equality of two 
population means, and assumes the sampled 
populations having normal distributions. 
When the sampled populations are unknown 
or non-normally distributed, it requires large 
sample sizes for applying central limit theory.

However, there are many situations in 
which the distribution of sampled population 
is unknown or non-normal but the sample 
sizes are not large enough to apply central 
limit theorem. 

Nonparametric inference methods do not 
depend on the specific distribution of the 
sampled population, and so is often called 
distribution-free method[1]. 

A nonparametric alternative to two-sample 
test is Wilcoxon rank sum test. Wilcoxon 
rank sum test assumes only the sampled 
populations having continuous distribution, 
no matter what shape, and is based on the 
sum of ranks of the sample, having the 
smaller or equal sample size between two 
samples, when two samples are pooled into a 
single ordered array. When a population is 
non-normally distributed, the median is 
generally much more appropriate location 
parameter than mean. The null hypothesis of 
Wilcoxon rank sum test is that the two 
sampled populations have the same distribution 
except for possible difference between two 
location measures, medians. More details about 
Wilcoxon rank sum test refer to Gibbons 
(1993), Conover (1980), Sprent and Smeeton 
(2001), and so on.[1-3].

Another nonparametric alternative to two-sample 
test is bootstrap hypothesis test. Bootstrap 
inference does not assume a specific population 
distribution nor require the sampling distribution 
of the statistic to be used for testing. 

Bootstrap is one of resampling methods. 
Bootstrap procedure resamples many subsamples 
with replacement from the original sample, 
and calculates the test statistic of interest 
from each resample. This process allows to 
estimate the distribution of the statistic of 
interest, and to estimate the test statistics’s 
standard error, and to produce confidence 
interval about the parameter being concerned. 
and to perform hypothesis test. The best 
thing about bootstrap inference is that the 
inference is possible for numerous statistics 
when their exact forms of sampling distributions 
are unknown; for instance, a difference between 
two sample medians, a ratio of two correlation 
coefficients, and more complicate statistics. 
One of weaknesses of bootstrap procedure is 
that it requires a lot of computation, and 
such a shortcoming makes bootstrap method 
to be rarely used for a long time even 
though it has been developed long ago. 
However, the rapid advances in computing 
technology and the lowered computer prices 
recently make many researchers use this 
method instead of classic statistical methods. 
It is easy to see that data analysts, who have 
interested in big data analysis, use bootstrap 
method for data analyses. 

This research is for comparing the power 
of the bootstrap inference with the classic 
statistical inference’s through simulation. The 
two-sample test is the most powerful test 
when the sampled population is normally 
distributed. So, an asymmetric and positively 
skewed distribution is selected as a population 
distribution. From the population distribution, 
two independent samples are defined and 
selected. From the selected samples, the 
powers of two-sample test, Wilcoxon rank 
sum test, and bootstrap test were evaluated 
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and compared.

2. Bootstrap Two-Sample Test

The justification of bootstrap inference rests 
on three aspects; the similarity of the sample 
distribution with the population distribution, 
the original sample size  , and the number 
of resamples,  [4].

Bootstrapping considers the original sample 
as the population, and selects replicate samples 
from the original sample with replacement. 
So, the original sample must well represent 
the sampled population.

The sample size,  , and the number of 
resamples,  , for the justification of bootstrap 
inference depend on the hypothesis being 
tested and the level of significance[1,4]. 
Mooney and Duval (1993) suggest the original 
sample size of 30∼50. Efron and Tibshirani 
(1986) suggests the number of resamples   
of at least 1,000 for the confidence interval 
estimation at the level of significance   
[6]. For More about   and   refer to Mooney 
and Duval (1993) and references therein. 

Hypothesis test is directly connected with 
confidence interval. If a test statistic value 
calculated from a sample is located within 
  level acceptance region, then we accept 
the null hypothesis, and reject it if not[7]. 

There are several methods for bootstrap 
confidence intervals[4,8]. Mooney and Duval 
(1993) presents four methods; the normal 
approximation method, the percentile method, 
the bias-corrected method (BC method), and 
the percentile-  method. 

The normal approximation method is useful 
when the test statistic has normal distribution 

but its variance is unknown. The percentile 
method constructs an ( )  confidence 
interval that includes all values of  , the 
test statistic value from the  th resample, 
between the 100( )th and 100( )th 
percentiles of the bootstrapped sampling 
distribution of  , the test statistic. The BC 
method was suggested by Efron(1982) to 
overcome drawbacks of the percentile method, 
and to adjust the bootstrapped sampling 
distribution to center on the point estimator 
 , a test statistic value calculated from the 
original sample. Finally, the percentil-  has 
proposed to overcome problems the BC method 
has. For more details about bootstrap confidence 
interval methods refer to Efron (1982), Efron 
and Tibshirani (1993), Mooney and Duval (1993), 
and Johnson (2001)[1,8-10].

This research used the BC method to 
calculate the powers of bootstrap two-sample 
test. 

We can refer to many statistic textbooks 
for two-sample  test, and references herein 
for Wilcoxon rank sum test.

3. Power of Bootstrap Two-sample Test

3.1 Simulation design

Let   and   be independent random 
variables, and for constant    ,

∼ 


 ∼    
               (1)

where 
  is a chi-square distribution with 

three degrees of freedom. 
Also assume that     ⋯    is a 

random sample from the distribution of  , 
and     ⋯    is a random sample from 
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the distribution of  and independent of the 
first sample  ’s.

The skewness of chi-square distribution 
with three degrees of freedom,   3, 

  





 ≈  

and its kurtosis is 
    


 . 

So the distribution of   is asymmetric and 
positively skewed, and has heavier tail than 
normal distribution. 

The mean and variance of chi-square 
distribution with   degrees of freedom are   
and  . Therefore, the mean and variance of 
random variable   are   and  , and the mean 
and variance of   are     and is  . 

The hypotheses we are here interested in 
are 

      vs.      , 

where   is the central measure of the 
distribution of  ,    . If two independent 
samples are selected from normal distribution, 
then   will be  , population mean. However, 
chi-square distribution with three degrees of 
freedom has asymmetric and heavy tail, 
median will be a more proper central measure 
than mean, and   will be  , the  th population 
median.

For simulation,   was chosen from 0 to 5 
by 0.5 interval, and   from 1.0 to 1.5 by 0.1 
interval, and   from 10 to 50 by 10 interval, 
and so the power was calculated for 330 
   combinations for each method. When 
    and    , two samples are selected 
from a equal distribution, and so two central 

measures are equal, too. On the other hand, 
when     and    , the two sampled 
population have equal variance, but the 
population distribution of   has bigger mean 
and median as much as   than the  ’s. 
When     and    , two population 
distributions have different central measures 
and variances, and the  ’s distribution has 
bigger mean, median, and variance than ’s.

The power of two-sample t-test was 
obtained using the function t.test() in r base 
r package such as

t.test(   , mu=0, var.equal=T, alt=“less”)

when    . The option var.equal=T was 
changed to var.equal=F when    .

For the power of Wilcoxon rank sum test, 
the function wilcox.test() in r base package 
was used such as 

wilcox.test(   , mu=0, alt="less", exact=T)

when    , and for     the option 
exact=F was used instead of exact=T. So, 
when    , the power of Wilcoxon rank sum 
is the power of exact test, and when     
the power of asymptotic test.

The power of bootstrap test was calculated 
using boot.two.bca() using the r package 
wBoot such as

boot.two.bca(   ,median, stacked=F, 
null.hyp=0, alt="less", R=1000)

where R=1000 means the number of bootstrap 
replicates.
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3.2 Simulation results

Table 1. shows the power of two sample 
t-test for population mean differences. Table 
2. shows the power of Wilcoxon rank sum 
test for two sample median differences, and 
Table 3. the powers of bootstrap test using 
the bias-corrected method (BC method). The 
powers for all three tests were calculated 
using the same data. The level of significance 
is   

Table 4. shows the powers of three tests 
when    , two populations having equal 
variance and different  . Fig 1. shows the 
power of three test when     and   , 
and Fig 2. when     and    . When the 
populations have equal variance, all three 
tests achieve the nominal level of significance, 
   , which is the power when    , even 
though Wilcoxon rank sum test has the 
smallest significance level and a little less 
than    , and two sample t-test comes 
next but nearly equal to     at all  , and 
the bootstrap two-sample test applied BC 
method has the biggest significance levels, 
which are slightly larger than the nominal 
level     except    . Fig 1, and Fig 2. 
shows that as   increase, the powers of 
three tests also increase, but the power of 
Wilcoxon rank sum test is the best, and then 
two sample t-test, and bootstrap test using 
BC method is the last. Two-sample t-test is 

developed for normal populations but it 
shows good performances for a relatively 
large positively skewed distribution like this 

 , comparing to bootstrap test.
Table 1. through Table 3. shows that for 

all selected value    , Wilcoxon rank sum 
test has the best power, and two sample 
t-test next, and the bootstrap test comes last.

Fig 1. Powers of two-sample test when variances
are equal and sample size    for alternative

differences of location parameters.

Fig 2. Powers of two-sample test when variances

are equal and sample size    for alternative
differences of location parameters.
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Table 1. Power of two sample t-test for testing      vs.      when two independent
samples are selected from chi-square distribution with three degrees of freedom (   ).


sample 
size
( )

  

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

1.0

10 0.0491 0.1243 0.2497 0.4144 0.5805 0.7323 0.8449 0.9154 0.9560 0.9788 0.9907

20 0.0480 0.1585 0.3726 0.6197 0.8193 0.9309 0.9752 0.9931 0.9986 0.9998 1.0000

30 0.0461 0.1982 0.471 0.7624 0.9254 0.983 0.9968 0.9996 1.0000 1.0000 1.0000

40 0.0493 0.2345 0.5749 0.8563 0.972 0.9965 0.9994 1.0000 1.0000 1.0000 1.0000

50 0.0501 0.2752 0.6622 0.9176 0.9905 0.9995 1.0000 1.0000 1.0000 1.0000 1.0000

1.1

10 0.0747 0.1684 0.3074 0.4770 0.6379 0.7761 0.8702 0.9317 0.9651 0.9831 0.9916

20 0.0950 0.2518 0.4840 0.7214 0.8770 0.9537 0.9838 0.9957 0.9994 1.0000 1.0000

30 0.1099 0.3224 0.6269 0.8549 0.9596 0.9921 0.9989 0.9998 1.0000 1.0000 1.0000

40 0.1280 0.3983 0.7317 0.9275 0.9890 0.9986 1.0000 1.0000 1.0000 1.0000 1.0000

50 0.1391 0.4722 0.8146 0.9662 0.9965 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000

1.2

10 0.1096 0.2204 0.3746 0.5405 0.6931 0.8175 0.8988 0.9452 0.9736 0.9882 0.9939

20 0.1591 0.3573 0.5950 0.7955 0.9165 0.9705 0.9907 0.9980 0.9998 1.0000 1.0000

30 0.2055 0.4631 0.7414 0.9158 0.9794 0.9961 0.9993 0.9999 1.0000 1.0000 1.0000

40 0.2489 0.5733 0.8455 0.9670 0.9953 0.9993 1.0000 1.0000 1.0000 1.0000 1.0000

50 0.2956 0.6608 0.9105 0.9888 0.9990 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1.3

10 0.1531 0.2787 0.4364 0.5990 0.7411 0.8480 0.9190 0.9582 0.9797 0.9906 0.9955

20 0.2443 0.4633 0.6939 0.8561 0.9452 0.9813 0.9946 0.9990 0.9998 1.0000 1.0000

30 0.3199 0.6049 0.8383 0.9512 0.9894 0.9979 0.9997 1.0000 1.0000 1.0000 1.0000

40 0.4008 0.7188 0.9163 0.9853 0.9981 0.9997 1.0000 1.0000 1.0000 1.0000 1.0000

50 0.4802 0.8071 0.9609 0.9952 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1.4

10 0.2000 0.3361 0.5007 0.6530 0.7845 0.8779 0.9339 0.9661 0.9845 0.9927 0.9968

20 0.3425 0.5661 0.7691 0.9017 0.9627 0.9874 0.9965 0.9997 1.0000 1.0000 1.0000

30 0.4510 0.7197 0.8993 0.9733 0.9945 0.9990 0.9998 1.0000 1.0000 1.0000 1.0000

40 0.5649 0.8303 0.9592 0.9936 0.9990 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

50 0.6543 0.9004 0.9843 0.9984 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1,5

10 0.2529 0.3974 0.5591 0.7008 0.8184 0.9003 0.9463 0.9734 0.9887 0.9942 0.9974

20 0.4433 0.6610 0.8314 0.9326 0.9759 0.9922 0.9984 0.9997 1.0000 1.0000 1.0000

30 0.5842 0.8147 0.9400 0.9852 0.9972 0.9995 0.9999 1.0000 1.0000 1.0000 1.0000

40 0.7024 0.9024 0.9812 0.9970 0.9997 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

50 0.7939 0.9519 0.9943 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000



Comparison of the Power of Bootstrap Two-Sample Test and Wilcoxon Rank Sum Test for Positively Skewed Population 

J. Chosun Natural Sci., Vol. 15, No. 1, 2022

15

Table 2. Power of Wilcoxon rank sum test for testing      vs.      when two
independent samples are selected from chi-square distribution with three degrees of freedom (   ).


sample 
size
( )

  

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

1.0

 10* 0.0470 0.1313 0.2836 0.4710 0.6457 0.7873 0.8847 0.9414 0.9691 0.9843 0.9927

20 0.0485 0.1986 0.4796 0.7567 0.9089 0.9742 0.9940 0.9989 1.0000 1.0000 1.0000

30 0.0478 0.2608 0.6312 0.8944 0.9802 0.9973 0.9995 1.0000 1.0000 1.0000 1.0000

40 0.0482 0.3190 0.7440 0.9555 0.9950 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000

50 0.0487 0.3756 0.8323 0.9813 0.9992 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1.1

10* 0.0738 0.1792 0.3462 0.5319 0.7025 0.8272 0.9076 0.9541 0.9775 0.9895 0.9945

20 0.0898 0.2918 0.5802 0.8216 0.9393 0.9851 0.9966 0.9995 1.0000 1.0000 1.0000

30 0.1020 0.3898 0.7445 0.9372 0.9898 0.9988 0.9999 1.0000 1.0000 1.0000 1.0000

40 0.1147 0.4815 0.8529 0.9788 0.9977 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000

50 0.1273 0.5627 0.9149 0.9935 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1.2

10* 0.1038 0.2295 0.4086 0.5910 0.7509 0.8589 0.9264 0.9641 0.9820 0.9915 0.9956

20 0.1446 0.3916 0.6760 0.8728 0.9600 0.9905 0.9982 0.9999 1.0000 1.0000 1.0000

30 0.1825 0.5212 0.8347 0.9663 0.9950 0.9994 1.0000 1.0000 1.0000 1.0000 1.0000

40 0.2224 0.6330 0.9167 0.9895 0.9993 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000

50 0.2528 0.7237 0.9609 0.9976 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1.3

10* 0.1394 0.2830 0.4632 0.6491 0.7884 0.8852 0.9427 0.9713 0.9869 0.9931 0.9964

20 0.2159 0.4866 0.7561 0.9113 0.9754 0.9946 0.9989 1.0000 1.0000 1.0000 1.0000

30 0.2862 0.6406 0.8938 0.9804 0.9973 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000

40 0.3500 0.7561 0.9560 0.9949 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

50 0.4133 0.8397 0.9833 0.9993 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1.4

10* 0.1797 0.3393 0.5224 0.6965 0.8214 0.9075 0.9551 0.9769 0.9899 0.9949 0.9974

20 0.2998 0.5807 0.8158 0.9380 0.9831 0.9964 0.9996 1.0000 1.0000 1.0000 1.0000

30 0.3996 0.7392 0.9338 0.9893 0.9984 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

40 0.4931 0.8478 0.9766 0.9981 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

50 0.5752 0.9096 0.9924 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1,5

10* 0.2278 0.3937 0.5745 0.7403 0.8535 0.9266 0.9634 0.9821 0.9915 0.9962 0.9983

20 0.3884 0.6584 0.8621 0.9582 0.9902 0.9979 0.9999 1.0000 1.0000 1.0000 1.0000

30 0.5161 0.8207 0.9613 0.9939 0.9994 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

40 0.6257 0.9081 0.9880 0.9992 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

50 0.7163 0.9564 0.9971 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

* The power of Wilcoxon rank sum test when n=10 was obtained by the exact test. 
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Table 3. Power of bootstrap two-sample test for testing      vs.      when two
independent samples are selected from chi-square distribution with three degrees of freedom (   ).


sample 
size
( )

  

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

1.0

10 0.0560 0.1313 0.2433 0.3902 0.5458 0.6851 0.7973 0.8804 0.9324 0.9595 0.9786

20 0.0512 0.1548 0.3346 0.5609 0.7539 0.8815 0.9537 0.9833 0.9956 0.9988 0.9999

30 0.0500 0.1795 0.4169 0.6889 0.8744 0.9617 0.9903 0.9985 0.9999 1.0000 1.0000

40 0.0521 0.2129 0.5120 0.7904 0.9413 0.9891 0.9982 0.9996 0.9999 1.0000 1.0000

50 0.0512 0.2406 0.5865 0.8630 0.9716 0.9966 0.9998 1.0000 1.0000 1.0000 1.0000

1.1

10 0.0860 0.1707 0.2929 0.4492 0.5974 0.7285 0.8284 0.9005 0.9421 0.9674 0.9815

20 0.0855 0.2226 0.4176 0.6378 0.8043 0.9097 0.9670 0.9879 0.9970 0.9994 0.9999

30 0.0956 0.2661 0.5258 0.7691 0.9143 0.9763 0.9939 0.9989 0.9999 1.0000 1.0000

40 0.1046 0.3227 0.6251 0.8586 0.9651 0.9940 0.9991 0.9998 0.9999 1.0000 1.0000

50 0.1116 0.3721 0.7088 0.9159 0.9841 0.9984 1.0000 1.0000 1.0000 1.0000 1.0000

1.2

10 0.1159 0.2147 0.3456 0.5014 0.6444 0.7648 0.8517 0.9154 0.9500 0.9731 0.9850

20 0.1325 0.2902 0.4982 0.7013 0.8440 0.9330 0.9759 0.9922 0.9982 0.9998 0.9999

30 0.1531 0.3603 0.6208 0.8308 0.9441 0.9835 0.9964 0.9996 0.9999 1.0000 1.0000

40 0.1800 0.4408 0.7262 0.9081 0.9799 0.9965 0.9996 0.9999 1.0000 1.0000 1.0000

50 0.2003 0.5118 0.8068 0.9515 0.9921 0.9992 1.0000 1.0000 1.0000 1.0000 1.0000

1.3

10 0.1511 0.2565 0.3981 0.5508 0.6863 0.7958 0.8736 0.9273 0.9577 0.9773 0.9875

20 0.1919 0.2902 0.5706 0.7594 0.8771 0.9514 0.9825 0.9950 0.9984 0.9998 0.9999

30 0.2281 0.4610 0.7071 0.8783 0.9614 0.9901 0.9983 0.9997 1.0000 1.0000 1.0000

40 0.2752 0.5562 0.8037 0.9428 0.9883 0.9984 0.9996 0.9999 1.0000 1.0000 1.0000

50 0.3120 0.6361 0.8750 0.9715 0.9955 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000

1.4

10 0.1869 0.3038 0.4469 0.5992 0.7246 0.8220 0.8946 0.9376 0.9657 0.9805 0.9886

20 0.2538 0.4402 0.6406 0.8041 0.9040 0.9648 0.9871 0.9968 0.9990 0.9999 1.0000

30 0.3082 0.5546 0.7742 0.9128 0.9737 0.9931 0.9987 0.9999 1.0000 1.0000 1.0000

40 0.3790 0.6545 0.8643 0.9643 0.9931 0.9989 0.9996 1.0000 1.0000 1.0000 1.0000

50 0.4381 0.7422 0.9206 0.9835 0.9980 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1,5

10 0.2280 0.3516 0.4943 0.6378 0.7609 0.8467 0.9081 0.9473 0.9710 0.9838 0.9903

20 0.3199 0.5080 0.6978 0.8419 0.9263 0.9740 0.9904 0.9973 0.9994 0.9999 1.0000

30 0.3998 0.6376 0.8308 0.9397 0.9813 0.9952 0.9993 0.9999 1.0000 1.0000 1.0000

40 0.4828 0.7431 0.9105 0.9776 0.9956 0.9995 0.9999 1.0000 1.0000 1.0000 1.0000

50 0.5611 0.8218 0.9502 0.9906 0.9990 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 4. Powers of three tests, two sample t-test, Wilcoxon rank sum test, bootstrap test with BC method
when two independent samples are selected from chi-square distribution with three degrees of freedom

and the population variances are equal,    (   ).

test
sample 
size
( )

  

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t-test

10 0.0491 0.1243 0.2497 0.4144 0.5805 0.7323 0.8449 0.9154 0.9560 0.9788 0.9907
20 0.0480 0.1585 0.3726 0.6197 0.8193 0.9309 0.9752 0.9931 0.9986 0.9998 1.0000

30 0.0461 0.1982 0.471 0.7624 0.9254 0.983 0.9968 0.9996 1.0000 1.0000 1.0000
40 0.0493 0.2345 0.5749 0.8563 0.972 0.9965 0.9994 1.0000 1.0000 1.0000 1.0000

50 0.0501 0.2752 0.6622 0.9176 0.9905 0.9995 1.0000 1.0000 1.0000 1.0000 1.0000

wilcox
on
test

 10* 0.0470 0.1313 0.2836 0.4710 0.6457 0.7873 0.8847 0.9414 0.9691 0.9843 0.9927

20 0.0485 0.1986 0.4796 0.7567 0.9089 0.9742 0.9940 0.9989 1.0000 1.0000 1.0000
30 0.0478 0.2608 0.6312 0.8944 0.9802 0.9973 0.9995 1.0000 1.0000 1.0000 1.0000

40 0.0482 0.3190 0.7440 0.9555 0.9950 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000
50 0.0487 0.3756 0.8323 0.9813 0.9992 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

bootst
rap 
test

10 0.0560 0.1313 0.2433 0.3902 0.5458 0.6851 0.7973 0.8804 0.9324 0.9595 0.9786
20 0.0512 0.1548 0.3346 0.5609 0.7539 0.8815 0.9537 0.9833 0.9956 0.9988 0.9999

30 0.0500 0.1795 0.4169 0.6889 0.8744 0.9617 0.9903 0.9985 0.9999 1.0000 1.0000
40 0.0521 0.2129 0.5120 0.7904 0.9413 0.9891 0.9982 0.9996 0.9999 1.0000 1.0000

50 0.0512 0.2406 0.5865 0.8630 0.9716 0.9966 0.9998 1.0000 1.0000 1.0000 1.0000
* The power of Wilcoxon rank sum test when n=10 was calculated by the exact test.

4. Conclusion

As a computationally intensive method, 
bootstrap inference requires much more 
computation than classic statistical inference, 
like two-sample   test or Wilcoxon rank sum 
test.

This paper examined the power of 
bootstrap two-sample test, and compared it 
with the powers of two-sample  test and 
Wilcoxon rank sum test through simulation. 
For this, two independent samples were 
selected from chi-square distribution with 
three degrees of freedom, and powers were 
calculated for various location differences 
and scale differences between two samples.

Two-sample  test assumes that the 
samples are selected from normal population, 
or that the sample sizes are large. In this 

research, we examined the power for the 
sample sizes 10∼50. Sample sizes greater 
than 30 are generally considered as large in 
statistics. The simulation results shows that 
the two sample  test has higher power than 
the bootstrap two-sample test at all selected 
(   ) values, scale and location constants 
in equation (1), and sample size. 

As a distribution-free method, Wilcoxon 
rank sum test is generally used for small 
samples. Wilcoxon rank sum test usually 
conducts the exact test for small samples, 
and the asymptotic test for large samples. 
The simulation results shows that Wilcoxon 
rank sum test for the equality of two 
population medians has the highest power 
among three tests; two-sample   test, Wilcoxon 
rank sum test, bootstrap two-sample test. 

Through the simulation results, we can find 
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that the bootstrap two-sample test about the 
equality of population medians has the lowest 
power among three tests when the sampled 
population has positively skewed distribution 
with heavy tail,  . 

As the computation techniques are rapidly 
developed and the cost for large computation 
becomes low, some people seem to prefer 
using bootstrap methods to the classic 
statistical methods. Bootstrap inference will 
be good when there are no mathematically 
exact form of distributions of test statistics 
(e.g., Burce etc., 2020)[11]. However, if there 
are classic inference methods which are 
widely accepted and used like two-sample 
test or Wilcoxon rank sum test, then it will 
be efficient in terms of time and cost, 
sometimes in terms of power too, to use 
them.
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