• Title/Summary/Keyword: Bootstrap Methods

Search Result 257, Processing Time 0.018 seconds

Bootstrap-Based Test for Volatility Shifts in GARCH against Long-Range Dependence

  • Wang, Yu;Park, Cheolwoo;Lee, Taewook
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.5
    • /
    • pp.495-506
    • /
    • 2015
  • Volatility is a variation measure in finance for returns of a financial instrument over time. GARCH models have been a popular tool to analyze volatility of financial time series data since Bollerslev (1986) and it is said that volatility is highly persistent when the sum of the estimated coefficients of the squared lagged returns and the lagged conditional variance terms in GARCH models is close to 1. Regarding persistence, numerous methods have been proposed to test if such persistency is due to volatility shifts in the market or natural fluctuation explained by stationary long-range dependence (LRD). Recently, Lee et al. (2015) proposed a residual-based cumulative sum (CUSUM) test statistic to test volatility shifts in GARCH models against LRD. We propose a bootstrap-based approach for the residual-based test and compare the sizes and powers of our bootstrap-based CUSUM test with the one in Lee et al. (2015) through simulation studies.

On Statistical Inference of Stratified Population Mean with Bootstrap (층화모집단 평균에 대한 붓스트랩 추론)

  • Heo, Tae-Young;Lee, Doo-Ri;Cho, Joong-Jae
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.3
    • /
    • pp.405-414
    • /
    • 2012
  • In a stratified sample, the sampling frame is divided into non-overlapping groups or strata (e.g. geographical areas, age-groups, and genders). A sample is taken from each stratum, if this sample is a simple random sample it is referred to as stratified random sampling. In this paper, we study the bootstrap inference (including confidence interval) and test for a stratified population mean. We also introduce the bootstrap consistency based on limiting distribution related to the plug-in estimator of the population mean. We suggest three bootstrap confidence intervals such as standard bootstrap method, percentile bootstrap method and studentized bootstrap method. We also suggest a bootstrap test method computing the $ASL_{boot}$(Achieved Significance Level). The results of estimation are verified using simulation.

Comparison of the Power of Bootstrap Two-Sample Test and Wilcoxon Rank Sum Test for Positively Skewed Population

  • Heo, Sunyeong
    • Journal of Integrative Natural Science
    • /
    • v.15 no.1
    • /
    • pp.9-18
    • /
    • 2022
  • This research examines the power of bootstrap two-sample test, and compares it with the powers of two-sample t-test and Wilcoxon rank sum test, through simulation. For simulation work, a positively skewed and heavy tailed distribution was selected as a population distribution, the chi-square distributions with three degrees of freedom, χ23. For two independent samples, the fist sample was selected from χ23. The second sample was selected independently from the same χ23 as the first sample, and calculated d+ax for each sampled value x, a randomly selected value from χ23. The d in d+ax has from 0 to 5 by 0.5 interval, and the a has from 1.0 to 1.5 by 0.1 interval. The powers of three methods were evaluated for the sample sizes 10,20,30,40,50. The null hypothesis was the two population medians being equal for Bootstrap two-sample test and Wilcoxon rank sum test, and the two population means being equal for the two-sample t-test. The powers were obtained using r program language; wilcox.test() in r base package for Wilcoxon rank sum test, t.test() in r base package for the two-sample t-test, boot.two.bca() in r wBoot pacakge for the bootstrap two-sample test. Simulation results show that the power of Wilcoxon rank sum test is the best for all 330 (n,a,d) combinations and the power of two-sample t-test comes next, and the power of bootstrap two-sample comes last. As the results, it can be recommended to use the classic inference methods if there are widely accepted and used methods, in terms of time, costs, sometimes power.

Applications of Bootstrap Methods for Canonical Correspondence Analysis (정준대응분석에서 붓스트랩 방법 활용)

  • Ko, Hyeon-Seok;Jhun, Myoungshic;Jeong, Hyeong Chul
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.3
    • /
    • pp.485-494
    • /
    • 2015
  • Canonical correspondence analysis is an ordination method used to visualize the relationships among sites, species and environmental variables. However, projection results are fluctuations if the samples slightly change and consistent interpretation on ecological similarity among species tends to be difficult. We use the bootstrap methods for canonical correspondence analysis to solve this problem. The bootstrap method results show that the variations of coordinate points are inversely proportional to the number of observations and coverage rates with bootstrap confidence interval approximates to nominal probabilities.

A Comparative Study on Tests of Correlation (상관계수에 대한 검정법 비교)

  • Cho, Hyun-Joo;Song, Myung-Unn;Jeong, Dong-Myung;Song, Jae-Kee
    • Journal of the Korean Data and Information Science Society
    • /
    • v.7 no.2
    • /
    • pp.235-245
    • /
    • 1996
  • In this paper, we studied about several methods of testing hypothesis of correlation, specially Approximate method, Empirical method and Bootstrap method. The Approximate method is based on the Fisher's Z-transformation and the Empirical and Bootstrap methods approximate the distribution of the sample correlation coefficient by Monte Carlo simulation and Bootstrap technique, respectively. In order to compare how good these tests are, we computed powers under various alternatives. Consequently, we see that the Approximate test performs very well even if in small sample and all tests have almost the same power in large sample.

  • PDF

Prediction of Conditional Variance under GARCH Model Based on Bootstrap Methods (붓스트랩 방법을 이용한 일반화 자기회귀 조건부 이분산모형에서의 조건부 분산 예측)

  • Kim, Hee-Young;Park, Man-Sik
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.2
    • /
    • pp.287-297
    • /
    • 2009
  • In terms of generalized autoregressive conditional heteroscedastic(GARCH) model, estimation of prediction interval based on likelihood is quite sensitive to distribution of error. Moveover, it is not an easy job to construct prediction interval for conditional variance. Recent studies show that the bootstrap method can be one of the alternatives for solving the problems. In this paper, we introduced the bootstrap approach proposed by Pascual et al. (2006). We employed it to Korean stock price data set.

Measurement uncertainty evaluation in FaroArm-machine using the bootstrap method

  • Horinov, Sherzod;Shaymardanov, Khurshid;Tadjiyev, Zafar
    • Journal of Multimedia Information System
    • /
    • v.2 no.3
    • /
    • pp.255-262
    • /
    • 2015
  • The modern manufacturing systems and technologies produce products that are more accurate day by day. This can be reached mainly by improvement the manufacturing process with at the same time restricting more and more the quality specifications and reducing the uncertainty in part. The main objective an industry becomes to lower the part's variability, since the less variability - the better is product. One of the part of this task is measuring the object's uncertainty. The main purpose of this study is to understand the application of bootstrap method for uncertainty evaluation. Bootstrap method is a collection of sample re-use techniques designed to estimate standard errors and confidence intervals. In the case study a surface of an automobile engine block - (Top view side) is measured by Coordinate Measuring Machine (CMM) and analyzed for uncertainty using Geometric Least Squares in complex with bootstrap method. The designed experiment is composed by three similar measurements (the same features in unique reference system), but with different points (5, 10, 20) concentration at each level. Then each cloud of points was independently analyzed by means of non-linear Least Squares, after estimated results have been reported. A MatLAB software tool used to generate new samples using bootstrap function. The results of the designed experiment are summarized and show that the bootstrap method provides the possibility to evaluate the uncertainty without repeating the Coordinate Measuring Machine (CMM) measurements many times, i.e. potentially can reduce the measuring time.

Rainfall Frequency Analysis Using SIR Algorithm and Bootstrap Methods (극한강우를 고려한 SIR알고리즘과 Bootstrap을 활용한 강우빈도해석)

  • Moon, Ki Ho;Kyoung, Min Soo;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4B
    • /
    • pp.367-377
    • /
    • 2010
  • In this study, we considered annual maximum rainfall data from 56 weather stations for rainfall frequency analysis using SIR(Sampling Important Resampling) algorithm and Bootstrap method. SIR algorithm is resampling method considering weight in extreme rainfall sample and Bootstrap method is resampling method without considering weight in rainfall sample. Therefore we can consider the difference between SIR and Bootstrap method may be due to the climate change. After the frequency analysis, we compared the results. Then we derived the results which the frequency based rainfall obtained using the data from SIR algorithm has the values of -10%~60% of the rainfall obtained using the data from Bootstrap method.

Design of Combined Shewhart-CUSUM Control Chart using Bootstrap Method (Bootstrap 방법을 이용한 결합 Shewhart-CUSUM 관리도의 설계)

  • 송서일;조영찬;박현규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.25 no.4
    • /
    • pp.1-7
    • /
    • 2002
  • Statistical process control is used widely as an effective tool to solve the quality problems in practice fields. All the control charts used in statistical process control are parametric methods, suppose that the process distributes normal and observations are independent. But these assumptions, practically, are often violated if the test of normality of the observations is rejected and/or the serial correlation is existed within observed data. Thus, in this study, to screening process, the Combined Shewhart - CUSUM quality control chart is described and evaluated that used bootstrap method. In this scheme the CUSUM chart will quickly detect small shifts form the goal while the addition of Shewhart limits increases the speed of detecting large shifts. Therefor, the CSC control chart is detected both small and large shifts in process, and the simulation results for its performance are exhibited. The bootstrap CSC control chart proposed in this paper is superior to the standard method for both normal and skewed distribution, and brings in terms of ARL to the same result.

Stationary bootstrap test for jumps in high-frequency financial asset data

  • Hwang, Eunju;Shin, Dong Wan
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.2
    • /
    • pp.163-177
    • /
    • 2016
  • We consider a jump diffusion process for high-frequency financial asset data. We apply the stationary bootstrapping to construct a bootstrap test for jumps. First-order asymptotic validity is established for the stationary bootstrapping of the jump ratio test under the null hypothesis of no jump. Consistency of the stationary bootstrap test is proved under the alternative of jumps. A Monte-Carlo experiment shows the advantage of a stationary bootstrapping test over the test based on the normal asymptotic theory. The proposed bootstrap test is applied to construct continuous-jump decomposition of the daily realized variance of the KOSPI for the year 2008 of the world-wide financial crisis.