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Abstract
Volatility is a variation measure in finance for returns of a financial instrument over time. GARCH models

have been a popular tool to analyze volatility of financial time series data since Bollerslev (1986) and it is said
that volatility is highly persistent when the sum of the estimated coefficients of the squared lagged returns and the
lagged conditional variance terms in GARCH models is close to 1. Regarding persistence, numerous methods
have been proposed to test if such persistency is due to volatility shifts in the market or natural fluctuation
explained by stationary long-range dependence (LRD). Recently, Lee et al. (2015) proposed a residual-based
cumulative sum (CUSUM) test statistic to test volatility shifts in GARCH models against LRD. We propose a
bootstrap-based approach for the residual-based test and compare the sizes and powers of our bootstrap-based
CUSUM test with the one in Lee et al. (2015) through simulation studies.
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1. Introduction

In finance, volatility is a variation measure for returns of a financial instrument over time. Measur-
ing volatility has been one of the most critical steps in financial modeling. A volatility model can
be used to forecast the absolute magnitude of returns or the density of the volatility in risk manage-
ment, asset pricing, and portfolio selection. Engle (1982) introduced the autoregressive conditional
heteroscedastic (ARCH) process and mentioned several attractive characteristics of ARCH models.
A more general process, generalized autoregressive conditional heteroscedasticity (GARCH) models,
have been a popular tool to analyze volatility of financial time series data since Bollerslev (1986).
GARCH (p, q) models satisfy:

xt = σtϵt, σ2
t = ω

◦ +

q∑
i=1

α◦i x2
t−i +

p∑
j=1

β◦jσ
2
t− j, (1.1)

where the innovation {ϵt}t∈Z is a sequence of standard i.i.d. random variables. It is assumed that
ω◦ > 0, α◦i ≥ 0 for all i = 1, . . . , q and β◦j ≥ 0 for all j = 1, . . . , p. It is said that the volatility is highly
persistent when the sum of the estimated coefficients of the squared lagged returns and the lagged
conditional variance terms in GARCH models is close to 1.
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An alternative way to deal with the high persistence of volatility is to use long-range dependent
(LRD) modeling on transformed data such as squared returns. Beran (1994) pointed out that scientists
in various areas have observed correlations between observations that decay to zero at a slow rate.
This long memory phenomenon has been documented long before suitable models were developed.
Ding et al. (1993) investigated the long-memory property of the stock market return series. They
found that the power transformation of the absolute returns has quite high autocorrelations for long
lags. A LRD time series {xt}t∈Z is defined as a second-order stationary time series model with a slowly
decaying autocovariance function,

γ(h) = Cov(xt, xt+h) ∼ Ch2d−1 = Ch2H−2, as h→ ∞, (1.2)

where C > 0 is a constant,

d ∈
(
0,

1
2

)
is the long-range dependence parameter, and

H = d +
1
2
∈

(
1
2
, 1

)
is the self-similarity (SS) parameter. Based on (1.2) for LRD series, the autocovariances are not
absolute summable. That is,

∑∞
h=−∞ |γ(h)| = +∞. If, on the other hand, the autocovariances are

absolute summable,
∑∞

h=−∞ |γ(h)| < ∞, the series is short-range dependence (SRD).
First proposed by Efron (1979), the bootstrap method is another key tool in this paper. Bootstrap

has been developed to overcome inaccuracies caused by small sample sizes in statistical inference.
There are many different types of bootstrap methods, but not all of them are easy to implement or
work well in certain cases. In this paper, we use the standard residual-based bootstrap method with
the procedures presented in Section 3.

This paper focuses on the persistence in volatility of financial time series. Numerous methods
have been proposed to test if such persistency is due to volatility shifts in the market or natural fluc-
tuation explained by stationary long-range dependence. Lee et al. (2015) proposed a residual-based
cumulative sum (CUSUM) test statistic to test volatility shifts in GARCH models against LRD. In
this paper, we propose a bootstrap-based approach for the residual-based test and compare the sizes
and powers of our bootstrap-based CUSUM test with the one in Lee et al. (2015) through simulation
studies.

The paper is organized as follows. Section 2 introduces the tests on volatility shift versus LRD
in Lee et al. (2015). Section 3 proposes the bootstrap-based CUSUM method for the residual-based
test. Simulation results are reported in Section 4 and the conclusion in Section 5.

2. Residual-Based CUSUM Test for Volatility Shifts against LRD

Many statistical tests to distinguish LRD and volatility shift divide the procedure into two classes
according to the null hypotheses: either LRD as the null hypothesis (Qu, 2011; Kuswanto, 2011), or
the volatility-shift model as the null (Jach and Kokoszka, 2008). In this paper, we use the latter one as
the null hypothesis. The tests consider:

H(R)
0 : VS-R model versus H1 : LRD model,
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where VS-R represents that volatility shifts occurred at R unknown locations. We fit each of the (R+1)
regimes using GARCH models.

Researchers proposed various methods to estimate the unknown change locations for the volatility.
The most popular is the CUSUM type of test statistic first considered by Kokoszka and Leipus (2000),
where they use the squared asset returns for a single volatility shift. Andreou and Ghysels (2002) argue
that this test suffers from size distortions under the finite sample because of the strong dependence
on observations. The Bartlett long-run variance estimator can be used to correct the size distortion
(Berkes et al., 2006; Zhang et al., 2007). However, the Bartlett long-run variance estimator is sensitive
to choice of the kernel bandwidth. To overcome such defects, Lee et al. (2015) adopted the residual-
based CUSUM test. The test uses the standardized residuals from an estimated GARCH model that
imitate the innovation series in GARCH models and reduce the dependence among observations.
Unlike the statistic proposed by Lee et al. (2004), the residual-based CUSUM test statistic does not
require tuning parameters for truncation and can be used for various types of volatility models.

The power transformation of returns, such {x2
t }t∈Z, displays recognizable autocorrelations; conse-

quently, the series {x2
t }t∈Z satisfies (1.2) and will be used for the alternative hypothesis. One of the

popular models for LRD is the fractionally integrated GARCH (FIGARCH) model of Baillie et al.
(1996). We use this as the alternative model in the power of the test and described it more details in
the simulation section. The first test we consider is:

H(0)
0 : The observed data {xt}t∈Z follow the VS-0 model,
H1 : not H0.

In order to conduct the test, consider the CUSUM test statistic based on {xt}t∈Z:

Tn =
1
√

nsn
max
1≤k≤n

∣∣∣∣∣∣∣
k∑

t=1

x2
t −

k
n

n∑
t=1

x2
t

∣∣∣∣∣∣∣ ,
where n is the sample size, and s2

n is the estimator of the long-run variance σ2 =
∑∞

h=−∞ Cov(x2
t , x

2
t+h).

Note that the CUSUM test for GARCH models suffers from size distortions and low powers under
finite sample size due to the strong correlation between observations. Therefore, Lee et al. (2015)
consider the CUSUM test based on the i.i.d. innovation series {ϵt} in equation (1.1), which are uncor-
related observations. That is,

T̂n =
1
√

nτ
max
1≤k≤n

∣∣∣∣∣∣∣
k∑

t=1

ϵ2
t −

k
n

n∑
t=1

ϵ2
t

∣∣∣∣∣∣∣ ,
where τ = Var(ϵ2

t ). Since {ϵt} is unobservable, one can estimate the innovation series by

ϵ̃t :=
xt

σ̃t

(
θ̂
) , t = 1, . . . , n, (2.1)

where θ̂ = (ω̂0, α̂1, . . . , α̂q, β̂1, . . . , β̂p)′ is the estimated parameter vector of GARCH models, and
σ̃2

t (θ) is calculated recursively from

σ̃2
t (θ) = ω +

q∑
i=1

αix2
t−i +

p∑
j=1

β jσ̃
2
t− j(θ),
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where θ = (ω, α1, . . . , αq, β1, . . . , βp)′ is the parameter vector. Note that calculating σ̃2
t recursively

requires the initial values for x2
0, . . . , x2

1−q and σ̃2
0, . . . , σ̃

2
1−p. The fGarch package in R provides the

initial values to be the sample average of x2
1, , . . . , x2

n. Finally, the residual-based CUSUM statistic is
defined as

T̃n =
1
√

nτ̂
max
1≤k≤n

∣∣∣∣∣∣∣
k∑

t=1

ϵ̃2
t −

k
n

n∑
t=1

ϵ̃2
t

∣∣∣∣∣∣∣ , (2.2)

where

τ̂2 =
1
n

n∑
t=1

ϵ̃4
t −

1
n

n∑
t=1

ϵ̃2
t

2

is a method of moment estimator of Var(ϵ2
1 ).

Lee et al. (2015) also proved that under certain assumptions and conditions, and under H(0)
0 , as

n→ ∞,
T̃n

d−→ sup
0≤u≤1

|B◦(u)|,

where B◦(u) is a standard Brownian bridge. We will use this as the asymptotic distribution of the
residual-based CUSUM test statistic T̃n. According to Resnick (1992), for a standard Brownian mo-
tion, the formula for the distribution of T̃n can be derived as

Pr
[
T̃n ≤ υ

]
= 1 + 2

∞∑
k=1

(−1)ke−2k2υ2
, υ > 0 (2.3)

and the p-values will be calculated based on (2.3) in the simulation section.
Consider a test on volatility shift for known R number of times with unknown locations against

LRD after the null hypothesis of no volatility shift is rejected. Therefore, the hypothesis would be-
come:

H(R)
0 : The observed data {xt}t∈Z follow the VS-R model,

H1 : The observed data {x2
t }t∈Z follow the LRD model.

We follow Lee et al. (2015) and only consider the simple case when R = 1 in this paper, which is the
single-volatility-shift case. The testing procedure can be easily extended to multiple volatility shifts.

Suppose the whole series consists of two different GARCH(p, q) models, namely {x1,t}t∈Z and
{x2,t}t∈Z, with the same standard i.i.d. innovations. That is,

xt =

x1,t, if 1 ≤ t ≤ k∗,
x2,t, if k∗ < t ≤ n,

(2.4)

where k∗ is an unknown change point and
x1,t = σ1,tϵt, σ2

1,t = ω
◦
1 +

q∑
i=1

α◦1,ix
2
1,t−i +

p∑
j=1

β◦1, jσ
2
1,t− j,

x2,t = σ2,tϵt, σ2
2,t = ω

◦
2 +

q∑
i=1

α◦2,ix
2
2,t−i +

p∑
j=1

β◦2, jσ
2
2,t− j.

(2.5)
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By Kokoszka and Leipus (2000), k∗ can be estimated by

k̂ = arg max
1≤k≤n

∣∣∣∣∣∣∣k(n − k)
n2

1
k

k∑
t=1

x2
t −

1
n − k

n∑
t=k+1

x2
t


∣∣∣∣∣∣∣ . (2.6)

Note that in theoretical perspective, any change-point estimator of VS-1 model satisfying

k̂ − k∗ = OP (1) .

will be sufficient. Theorem 6 of Kokoszka and Leipus (2000) verifies (2.7) for the change-point
estimator in (2.6). Assume again that ω◦m > 0, α◦m,i ≥ 0 for all i = 1, . . . , q and β◦m, j ≥ 0 for all
j = 1, . . . , p, for m = 1, 2. The test statistic is given by Lee et al. (2015) as

Mn = max
{
T̃n,1, T̃n,2

}
, (2.7)

where

T̃n,1 =
1
τ̂1

k̂
1
2 max

1≤k≤k̂

∣∣∣∣∣∣∣∣
k∑

t=1

ϵ̃2
t −

k

k̂

k̂∑
t=1

ϵ̃2
t

∣∣∣∣∣∣∣∣ , T̃n,2 =
1
τ̂2

(
n − k̂

) 1
2

max
k̂<k≤n

∣∣∣∣∣∣∣∣
k∑

t=k̂+1

ϵ̃2
t −

k − k̂

n − k̂

n∑
t=k̂+1

ϵ̃2
t

∣∣∣∣∣∣∣∣ ,
and

τ̂2
1 =

1

k̂

k̂∑
t=1

ϵ̃4
t −

1

k̂

k̂∑
t=1

ϵ̃2
t


2

, τ̂2
2 =

1

n − k̂

n∑
t=k̂+1

ϵ̃4
t −

 1

n − k̂

n∑
t=k̂+1

ϵ̃2
t


2

.

Let x̃1,t = xt, t = 1, . . . , k̂, and x̃2,t = xt, t = k̂ + 1, . . . , n. We define recursively

σ̃2
1,t(θ1) = ω1 +

q∑
i=1

α1,i x̃2
1,t−i +

p∑
j=1

β1, jσ̃
2
1,t− j(θ1), t = 1, . . . , k̂,

σ̃2
2,t(θ2) = ω2 +

q∑
i=1

α2,i x̃2
2,t−i +

p∑
j=1

β2, jσ̃
2
2,t− j(θ2), t = k̂ + 1, . . . , n

with given fixed initial vectors (x̃2
1,0, . . . , x̃2

1,1−q), (x̃2
2,k̂
, . . . , x̃2

2,k̂−q+1
), (σ̃2

1,0, . . . , σ̃
2
1,1−p), and (σ̃2

2,k̂
, . . . ,

σ̃2
2,k̂−p+1

) and parameter vectors θm = (ωm, αm,1, . . . , αm,q, βm,1, . . . , βm,p)′, m = 1, 2. By using these
equations, Lee et al. (2015) then calculated {ϵ̃t, t = 1, . . . , n} by

ϵ̃t =


xt

σ̃1,t

(
θ̂1

) , t = 1, . . . , k̂,

xt

σ̃2,t

(
θ̂2

) , t = k̂ + 1, . . . , n.
(2.8)

The Gaussian QMLEs for θ1 and θ2 are given by

θ̂1 = argmin
θ1∈Θ

k̂∑
t=1

l̃t(θ1), θ̂2 = argmin
θ2∈Θ

n∑
t=k̂+1

l̃t(θ2), (2.9)
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where Θ is a parameter space belongs to [c1, c2]p+q+1 for some 0 < c1 < c2 < ∞, and

l̃t(θm) =
r2

t

σ̃2
t (θm)

+ log σ̃2
t (θm), σ̃2

t (θm) = σ̃2
1,t(θm)I

(
t ≤ k̂

)
+ σ̃2

2,t(θm)I
(
t > k̂

)
, m = 1, 2.

Similarly, they also proved that if certain conditions hold, for the VS-1 model (2.5) under H(1)
0 , as

n→ ∞,

Mn
d−→ max

{
sup

0≤u≤1

∣∣∣B◦1(u)
∣∣∣ , sup

0≤u≤1

∣∣∣B◦2(u)
∣∣∣} ,

where B◦1(u) and B◦2(u) are independent standard Brownian bridges. After calculating Mn, we can
then use equation (2.3) to calculate the p-value of the test.

Note that we consider only the case when the single volatility shift is known in priori. The binary
segmentation method (Bai, 1997) can be used to estimate the number of change points if the number
of volatility shift is unknown.

3. Bootstrap Tests for Volatility Shifts against LRD

The use of the asymptotic test statistics for the finite sample might give size distortion and lower
power. Efron (1979) introduced the bootstrap method to study the distributions of estimators (sam-
pling distribution) and test statistics by resampling the finite sample data. In this paper, we compare
the size and power of the tests presented in Section 2 using the asymptotic and bootstrap-based meth-
ods.

If the data {x1, . . . , xn} are independent observations, a commonly used bootstrap procedure is
to sample m observations, {x∗1, . . . , x∗m}, from the original data with replacement, and calculate the
estimator or test statistic based on the sampled observations, say t∗. This procedure is repeated B
times, and {t∗1, . . . , t∗B} is obtained. Then the distribution of bootstrap replication can approximate the
distribution of the estimator or test statistic under the null hypothesis. If one performs bootstrap for
the test statistic, then the right-sided bootstrap p-value can be calculated as

p̂∗ =
1
B

B∑
b=1

I
(
t∗b ≥ t

)
,

where I(·) is the indicator function and t is the test statistic evaluated from the original data.
Time series data are autocorrelated, and therefore are not independent to each other. Simply

resampling the original data might yield even worse results than the asymptotic estimation does. One
method to deal with such a time series problem is to bootstrap the estimated i.i.d. innovation series {ϵ̃t},
and then generate recursively a bootstrap sample {x∗t }. The algorithm for the bootstrap residual-based
CUSUM test for no volatility shift against LRD is:

1. Obtain the estimated GARCH model parameters and calculate the innovation series {ϵ̃t} according
to equation (2.1) and compute the test statistic T̃n by equation (2.2).

2. Construct the bootstrap innovation series {ϵ̃∗t } with size equal to the original sample size n, by
drawing independently with replacement from {ϵ̃t}.
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3. Generate recursively a bootstrap sample {x∗t } using the estimated parameters and the bootstrap
innovation series from Steps 1 and 2, respectively as:

x∗t = σ
∗
t ϵ̃
∗
t ,

σ∗2t = ω̂ +

q∑
i=1

α̂ix∗2t−i +

p∑
j=1

β̂ jσ̃
∗2
t− j,

with fixed initial values for x∗20 , . . . , x∗21−q and σ̃∗20 , . . . , σ̃
∗2
1−p.

4. Compute the bootstrap test statistic T̃ ∗n from the bootstrap sample {x∗t } as follows:

T̃ ∗n =
1
√

nτ̂∗
max
1≤k≤n

∣∣∣∣∣∣∣
k∑

t=1

ϵ̃∗∗2t − k
n

n∑
t=1

ϵ̃∗∗2t

∣∣∣∣∣∣∣ ,
where {ϵ̃∗∗t } is defined through the bootstrap sample {x∗t } by ϵ̃∗∗t = x∗t /σ̃

∗∗
t for t = 1, 2, . . . , n. Here,

θ̂∗ = (ω̂∗, α̂∗1, . . . , α̂
∗
q, β̂
∗
1, . . . , β̂

∗
p)′ is the estimated parameter vector of GARCH models for {x∗t } and

σ̃∗∗2t = ω̂∗ +

q∑
i=1

α̂∗i x∗2t−i +

p∑
j=1

β̂∗jσ̃
∗∗2
t− j

with fixed initial values for x∗20 , . . . , x∗21−q and σ̃∗∗20 , . . . , σ̃∗∗21−p.

5. Repeat Steps 2–4 B times to obtain T̃ ∗n1
, . . . , T̃ ∗nB

.

6. Estimate the bootstrap p-value by

p̂∗ =
1
B

B∑
b=1

I
(
T̃ ∗nb
≥ T̃n

)
,

where I(·) is the indicator function.

For the test statistic Mn for one volatility shift against LRD, the bootstrap procedure is given as:

1. Get the estimated change point k̂ by equation (2.6) and obtain the estimated parameters of GARCH
models as defined by equation (2.9).

2. Calculate innovation series {ϵ̃t} by equation (2.8) and compute the test statistic Mn as in equation
(2.7).

3. Construct the bootstrap innovation series {ϵ̃∗t } with size equal to the original sample size, by draw-
ing independently with replacement from {ϵ̃t}.

4. Generate recursively a bootstrap sample {x∗t } by using the estimated change point k̂, estimated
parameters θ̂m = (ω̂m, α̂m,1, . . . , α̂m,q, β̂m,1, . . . , β̂m,p)′ for m = 1, 2 of GARCH models and the boot-
strap innovation series {ϵ̃∗t } from Steps 1 and 3, respectively as:

x∗t = σ
∗
t ϵ̃
∗
t ,
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where

σ∗2t =


ω̂1 +

q∑
i=1

α̂1,ix∗2t−i +

p∑
j=1

β̂1, jσ̃
∗2
1,t− j, t = 1, . . . , k̂,

ω̂2 +

q∑
i=1

α̂2,ix∗2t−i +

p∑
j=1

β̂2, jσ̃
∗2
2,t− j, t = k̂ + 1, . . . , n

with fixed initial values for x∗20 , . . . , x∗21−q and σ̃∗20 , . . . , σ̃
∗2
1−p.

5. Compute the bootstrap test statistic M∗n from the bootstrap sample {x∗t } as:

M∗n = max
{
T̃ ∗n,1, T̃

∗
n,2

}
,

where

T̃ ∗n,1 =
1
τ̂∗1

k̂
1
2 max

1≤k≤k̂

∣∣∣∣∣∣∣∣
k∑

t=1

ϵ̃∗∗2t − k

k̂

k̂∑
t=1

ϵ̃∗∗2t

∣∣∣∣∣∣∣∣ , T̃ ∗n,2 =
1
τ̂∗2

(
n − k̂

) 1
2 max

k̂<k≤n

∣∣∣∣∣∣∣∣
k∑

t=k̂+1

ϵ̃∗∗2t − k − k̂

n − k̂

n∑
t=k̂+1

ϵ̃∗∗2t

∣∣∣∣∣∣∣∣ ,
and

τ̂∗21 =
1

k̂

k̂∑
t=1

ϵ̃∗∗4t −

1

k̂

k̂∑
t=1

ϵ̃∗∗2t


2

, τ̂∗22 =
1

n − k̂

n∑
t=k̂+1

ϵ̃∗∗4t −

 1

n − k̂

n∑
t=k̂+1

ϵ̃∗∗2t


2

,

where {ϵ̃∗∗t } is defined through the bootstrap sample {x∗t } by ϵ̃∗∗t = x∗t /σ̃
∗∗
t for t = 1, 2, . . . , n. Here,

θ̂∗m = (ω̂∗m, α̂
∗
m,1, . . . , α̂

∗
m,q, β̂

∗
m,1, . . . , β̂

∗
m,p)′ for m = 1, 2 is the estimated parameter vector of GARCH

models, obtained by (2.9) based on {x∗t } and

σ∗∗2t =


ω̂∗1 +

q∑
i=1

α̂∗1,ix
∗2
t−i +

p∑
j=1

β̂∗1, jσ̃
∗∗2
1,t− j, t = 1, . . . , k̂,

ω̂∗2 +

q∑
i=1

α̂∗2,ix
∗2
t−i +

p∑
j=1

β̂∗2, jσ̃
∗∗2
2,t− j, t = k̂ + 1, . . . , n,

with fixed initial values for x∗20 , . . . , x∗21−q and σ̃∗∗20 , . . . , σ̃∗∗21−p.

6. Repeat Steps 3–5 B times to obtain M∗n1
, . . . , M∗nB

.

7. Estimate the bootstrap p-value by

p̂∗ =
1
B

B∑
b=1

I
(
M∗nb
≥ Mn

)
,

where I(·) is the indicator function.
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4. Simulation Study

For empirical sizes of tests for volatility shifts against LRD, we consider the univariate GARCH(1, 1)
models as

xt = σtϵt,

σ2
t = ω + αx2

t−1 + βσ
2
t−1,

where {ϵt}t∈Z is the the innovation series following specific distributions. In the test for no volatility
shifts against LRD, we consider two types of innovation distributions: i.i.d. standard normal and t-
distribution with degrees of freedom 5, denoted by t(5), following the setting from Lee et al. (2015).
We also follow the 6 sets of GARCH(1, 1) parameters (ω, α, β) with α + β ranging from 0.5 to very
close to 1. In the test for one volatility shift against LRD, i.i.d. standard normal is only considered
as the innovation series. The GARCH(1, 1) parameters shift at the midpoint of the samples from
(ω, α, β) = (0.1, 0.1, 0.8) to 4 other sets with α + β ranging from 0.5 to very close to 1.

For the empirical powers, we consider only the FIGARCH(1, d, 1) models, proposed by Baillie et
al. (1996), given as

xt = σtϵt,

(1 − βL)σ2
t = ω +

(
(1 − βL) + (1 − ϕL)(1 − L)d

)
x2

t .

Here, L is the backshift operator. In the FIGARCH(1, d, 1) models, the power d of the fractional
differencing operator, (1 − L)d, is allowed to be a non-integer and can be expanded as

(1 − L)d =

∞∑
i=0

πiLi,

where

πi =
∏

0≤k≤i

k − 1 − d
k

,

and d ∈ (−1/2, 1/2). For d > 0, the process is long range dependent. In the simulation of empirical
powers, we set FIGARCH(1, d, 1) parameters as (ω, β, ϕ) = (0.6, 0.1, 0.2) and (0.2, 0.2, 0.2), each
with three different values of d = 0.25, 0.35, 0.45. All results are based on 1000 replications on
sample sizes 500, 750, 1000 and 2000 with significant level 5%, and the bootstrap replication is set to
be B = 100.

Table 1 presents the empirical sizes of the test for no volatility shift against LRD under different
sample sizes and different types of innovations. It contains the asymptotic (columns under “Asymp-
totic”) and bootstrap (columns under “Bootstrap”) sizes for the test statistic T̃n in (2.2) and the first
bootstrap algorithm in Section 3, respectively. According to Table 1, the bootstrap method yields
better sizes within acceptable range than the asymptotic ones, even α + β are very close to 1. This
difference is more evident when the innovation follows a heavy-tailed distribution; in addition, the
bootstrap size is closer to the nominal 5% significance level when the sample size is small, unlike
asymptotic ones. When the sample sizes get larger, the bootstrap size gets similar to the asymptotic
size when the innovation is normally distributed, but still better than the asymptotic ones when the
innovation follows heavy-tailed distribution. Hence, the bootstrap method might be a good choice
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Table 1: Empirical sizes of test for no volatility shifts under test statistic T̃n

(ω, α, β) N(0, 1) t(5)
Asymptotic Bootstrap Asymptotic Bootstrap

(0.1, 0.1, 0.8) 0.024 0.051 0.011 0.039
(0.1, 0.1, 0.6) 0.022 0.061 0.018 0.058

n = 500 (0.1, 0.1, 0.4) 0.025 0.058 0.017 0.045
(0.1, 0.2, 0.6) 0.024 0.042 0.014 0.030
(0.3, 0.1, 0.8) 0.023 0.049 0.018 0.047
(0.3, 0.1, 0.89) 0.010 0.043 0.015 0.044
(0.1, 0.1, 0.8) 0.032 0.060 0.022 0.042
(0.1, 0.1, 0.6) 0.026 0.048 0.009 0.038

n = 750 (0.1, 0.1, 0.4) 0.020 0.042 0.017 0.046
(0.1, 0.2, 0.6) 0.034 0.048 0.036 0.052
(0.3, 0.1, 0.8) 0.024 0.041 0.028 0.063
(0.3, 0.1, 0.89) 0.016 0.046 0.021 0.052
(0.1, 0.1, 0.8) 0.034 0.052 0.014 0.036
(0.1, 0.1, 0.6) 0.037 0.057 0.029 0.049

n = 1000 (0.1, 0.1, 0.4) 0.036 0.052 0.021 0.043
(0.1, 0.2, 0.6) 0.043 0.050 0.032 0.051
(0.3, 0.1, 0.8) 0.034 0.052 0.029 0.044
(0.3, 0.1, 0.89) 0.020 0.049 0.014 0.034
(0.1, 0.1, 0.8) 0.040 0.048 0.027 0.041
(0.1, 0.1, 0.6) 0.047 0.058 0.028 0.046

n = 2000 (0.1, 0.1, 0.4) 0.051 0.054 0.025 0.040
(0.1, 0.2, 0.6) 0.052 0.054 0.023 0.034
(0.3, 0.1, 0.8) 0.040 0.048 0.035 0.047
(0.3, 0.1, 0.89) 0.027 0.044 0.035 0.047

Table 2: Empirical powers of test for no volatility shifts under test statistic T̃n

d n = 500 n = 750
Asymptotic Bootstrap Asymptotic Bootstrap

FIGARCH(1, d, 1) 0.25 0.197 0.249 0.198 0.253

(ω = 0.6, β = 0.1) 0.35 0.271 0.324 0.261 0.328
0.45 0.309 0.369 0.299 0.345

FIGARCH(1, d, 1) 0.25 0.144 0.201 0.154 0.217

(ω = 0.2, β = 0.2) 0.35 0.203 0.273 0.189 0.256
0.45 0.245 0.296 0.254 0.300

d n = 1000 n = 2000
Asymptotic Bootstrap Asymptotic Bootstrap

FIGARCH(1, d, 1) 0.25 0.342 0.379 0.558 0.573

(ω = 0.6, β = 0.1) 0.35 0.446 0.477 0.667 0.685
0.45 0.489 0.528 0.713 0.719

FIGARCH(1, d, 1) 0.25 0.260 0.302 0.444 0.474

(ω = 0.2, β = 0.2) 0.35 0.370 0.401 0.586 0.610
0.45 0.433 0.453 0.631 0.651

FIGARCH = fractionally integrated generalized autoregressive conditionally heteroskedastic

when either data show the evidence of heavy tailed innovation or the sample size is small. Table 2
summarizes the power comparison in the bootstrap method that is more powerful than the asymptotic
one for the cases with small samples; however, the power of both methods increases dramatically as
the sample size increases and the advantage of the bootstrap diminishes.

Table 3 presents the empirical sizes of the test for one volatility shift against LRD. The results show
that the bootstrap size is more assuring under the small sample sizes for test M̃n. The asymptotic size
gets close to the nominal significance level as the sample size increases. Table 4 shows the empirical
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Table 3: Empirical sizes of test for one volatility shift under test statistic M̃n

(0.1, 0.1, 0.8) n = 500 n = 750
to (ω2, α2, β2) Asymptotic Bootstrap Asymptotic Bootstrap
(0.1, 0.1, 0.6) 0.007 0.059 0.017 0.072
(0.1, 0.1, 0.4) 0.004 0.064 0.009 0.058
(0.1, 0.2, 0.6) 0.006 0.054 0.014 0.060
(0.3, 0.1, 0.8) 0.004 0.040 0.006 0.033
(0.1, 0.1, 0.8) n = 1000 n = 2000
to (ω2, α2, β2) Asymptotic Bootstrap Asymptotic Bootstrap
(0.1, 0.1, 0.6) 0.011 0.058 0.037 0.072
(0.1, 0.1, 0.4) 0.015 0.044 0.032 0.061
(0.1, 0.2, 0.6) 0.016 0.058 0.032 0.058
(0.3, 0.1, 0.8) 0.010 0.043 0.023 0.058

Table 4: Empirical powers of test for one volatility shift under test statistic M̃n

d n = 500 n = 750
Asymptotic Bootstrap Asymptotic Bootstrap

FIGARCH(1, d, 1) 0.25 0.065 0.149 0.105 0.188

(ω = 0.6, β = 0.1) 0.35 0.075 0.183 0.198 0.289
0.45 0.084 0.198 0.229 0.320

FIGARCH(1, d, 1) 0.25 0.039 0.124 0.089 0.187

(ω = 0.2, β = 0.2) 0.35 0.061 0.143 0.115 0.209
0.45 0.068 0.171 0.151 0.251

d n = 1000 n = 2000
Asymptotic Bootstrap Asymptotic Bootstrap

FIGARCH(1, d, 1) 0.25 0.188 0.270 0.410 0.452

(ω = 0.6, β = 0.1) 0.35 0.245 0.346 0.513 0.564
0.45 0.301 0.450 0.550 0.597

FIGARCH(1, d, 1) 0.25 0.115 0.200 0.272 0.347

(ω = 0.2, β = 0.2) 0.35 0.166 0.264 0.416 0.483
0.45 0.218 0.313 0.457 0.539

FIGARCH = fractionally integrated generalized autoregressive conditionally heteroskedastic

power of test for one volatility shift. Overall, the power increases significantly when the sample size
increases and the long range dependence of the series increases; in addition, the bootstrap method
yields superior powers than asymptotic method when the sample size is small. This difference is
barely observed as the sample size increases. In conclusion, bootstrap tests are shown to be more
preferable for one volatility shift against LRD when sample sizes are small.

5. Conclusion
Lee et al. (2015) proposed the test statistics for volatility shifts against LRD based on the CUSUM
statistic using residual series from the fitted GARCH models. In this paper, we extended it to the
bootstrap methods and compared the empirical sizes and powers of the test statistics of Lee et al.
(2015) and our bootstrap tests. We concluded that our bootstrap methods are more promising than
the asymptotic ones for volatility shifts against LRD in small sample sizes, since empirical sizes are
closer to the nominal significant level and empirical powers are higher.
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